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Generative deep learning

Using AI as augmented intelligence rather than artificial

intelligence.

Use of deep learning to augment creative activities such as writing,

music and art, to generate new things.

Some applications: text generation, deep dreaming, neural style

transfer, variational autoencoders and generative adversarial

networks.
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Text generation

Generate sequence data: Train a model to predict the next token or

next few tokens in a sentence, using previous tokens as input.

A network that models the probability of the next tokens given the

previous ones is called a language model.

Generating sequential data is the closest computers get to

dreaming.

Source: Alex Graves (2013), Generating Sequences With Recurrent Neural Networks
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https://arxiv.org/abs/1308.0850


Word-level language model

Diagram of a word-level language model.

Source: Marcus Lautier (2022).
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Character-level language model

Diagram of a character-level language model (Char-RNN)

Source: Tensorflow tutorial, .Text generation with an RNN
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https://www.tensorflow.org/text/tutorials/text_generation


Useful for speech recognition

RNN output Decoded Transcription

what is the weather like in

bostin right now

what is the weather like in

boston right now

prime miniter nerenr modi prime minister narendra modi

arther n tickets for the game are there any tickets for the

game
Figure 1: Examples of transcriptions directly from the RNN with errors that are fixed by addition of

a language model.

Source: Hannun et al. (2014), , arXiv:1412.5567, Table 1.Deep Speech: Scaling up end-to-end speech recognition
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https://arxiv.org/pdf/1412.5567.pdf


Generating Shakespeare I

ROMEO:

Why, sir, what think you, sir?

AUTOLYCUS:

A dozen; shall I be deceased.

The enemy is parting with your general,

As bias should still combit them offend

That Montague is as devotions that did satisfied;

But not they are put your pleasure.

Source: Tensorflow tutorial, .Text generation with an RNN
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https://www.tensorflow.org/text/tutorials/text_generation


Generating Shakespeare II

DUKE OF YORK:

Peace, sing! do you must be all the law;

And overmuting Mercutio slain;

And stand betide that blows which wretched shame;

Which, I, that have been complaints me older hours.

LUCENTIO:

What, marry, may shame, the forish priest-lay estimest you, sir,

Whom I will purchase with green limits o’ the commons’ ears!

Source: Tensorflow tutorial, .Text generation with an RNN
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https://www.tensorflow.org/text/tutorials/text_generation


Generating Shakespeare III

ANTIGONUS:

To be by oath enjoin’d to this. Farewell!

The day frowns more and more: thou’rt like to have

A lullaby too rough: I never saw

The heavens so dim by day. A savage clamour!

[Exit, pursued by a bear]
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Sampling strategy

Greedy sampling will choose the token with the highest probability.

It makes the resulting sentence repetitive and predictable.

Stochastic sampling: if a word has probability 0.3 of being next in the

sentence according to the model, we’ll choose it 30% of the time.

But the result is still not interesting enough and still quite

predictable.

Use a softmax temperature to control the randomness. More

randomness results in more surprising and creative sentences.
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Softmax temperature

The softmax temperature is a parameter that controls the

randomness of the next token.

The formula is:

softmax ​(x) =temperature ​

​ exp(x ​/temperature)∑i i

exp(x/temperature)
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“I am a” …

Idea inspired by Mehta (2023), The need for sampling temperature and differences between whisper, GPT-3, and probabilistic model’s temperature
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https://shivammehta25.github.io/posts/temperature-in-language-models-open-ai-whisper-probabilistic-machine-learning/


Generating Laub (temp = 0.01)

In today’s lecture we will be different situation. So, next one is

what they rective that each commit to be able to learn some

relationships from the course, and that is part of the image that

it’s very clese and black problems that you’re trying to fit the

neural network to do there instead of like a specific though shef

series of layers mean about full of the chosen the baseline of car

was in the right, but that’s an important facts and it’s a very small

summary with very scrort by the beginning of the sentence.
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Generating Laub (temp = 0.25)

In today’s lecture we will decreas before model that we that we

have to think about it, this mightsks better, for chattely the same

project, because you might use the test set because it’s to be

picked up the things that I wanted to heard of things that I like

that even real you and you’re using the same thing again now

because we need to understand what it’s doing the same thing

but instead of putting it in particular week, and we can say that’s

a thing I mainly link it’s three columns.
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Generating Laub (temp = 0.5)

In today’s lecture we will probably the adw n wait lots of ngobs

teulagedation to calculate the gradient and then I’ll be less than

one layer the next slide will br input over and over the threshow

you ampaigey the one that we want to apply them quickly. So,

here this is the screen here the main top kecw onct three thing to

told them, and the output is a vertical variables and Marceparase

of things that you’re moving the blurring and that just data set is

to maybe kind of categorical variants here but there’s more

efficiently not basically replace that with respect to the best and

be the same thing.
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Generating Laub (temp = 1)

In today’s lecture we will put it different shates to touch on last

week, so I want to ask what are you object frod current. They

don’t have any zero into it, things like that which mistakes. 10

claims that the average version was relden distever ditgs and

Python for the whole term wo long right to really. The name of

these two options. There are in that seems to be modified

version. If you look at when you’re putting numbers into your,

that that’s over. And I went backwards, up, if they’rina functional

pricing working with.
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Generating Laub (temp = 1.5)

In today’s lecture we will put it could be bedinnth. Lowerstoriage

nruron. So rochain the everything that I just sGiming. If there was

a large. It’s gonua draltionation. Tow many, up, would that black

and 53% that’s girter thankAty will get you jast typically stickK

thing. But maybe. Anyway, I’m going to work on this libry two,

past, at shit citcs jast pleming to memorize overcamples like pre

pysing, why wareed to smart a one in this reportbryeccuriay.
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Copilot’s “Conversation Style”

This is (probably) just the ‘temperature’ knob under the hood.
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Generate the most likely sequence

An example sequence-to-sequence chatbot model.

Source: Payne (2021), , Width.ai blog.What is beam search
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https://www.width.ai/post/what-is-beam-search


Beam search

Illustration of a beam search.

Source: Doshi (2021), , towardsdatascience.com.Foundations of NLP Explained Visually: Beam Search, How It Works
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https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24
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Transformer architecture

Highly recommended viewing: Iulia Turk (2021), 

, ML Tech Talks.

GPT makes use of a mechanism known as attention, which

removes the need for recurrent layers (e.g., LSTMs). It works like

an information retrieval system, utilizing queries, keys, and

values to decide how much information it wants to extract from

each input token.

Attention heads can be grouped together to form what is known

as a multihead attention layer. These are then wrapped up inside

a Transformer block, which includes layer normalization and skip

connections around the attention layer. Transformer blocks can

be stacked to create very deep neural networks.

Transfer learning and

Transformer models

Source: David Foster (2023), Generative Deep Learning, 2nd Edition, O’Reilly Media, Chapter 9.
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https://www.youtube.com/watch?v=LE3NfEULV6k
https://www.youtube.com/watch?v=LE3NfEULV6k


🤗 Transformers package
import transformers1
from transformers import pipeline2
generator = pipeline(task="text-generation", model="gpt2", revision="6c0e608")3

transformers.set_seed(1)1
print(generator("It's the holidays so I'm going to enjoy")[0]["generated_text"])2

It's the holidays so I'm going to enjoy playing in there."

Advertisement

But how many other holiday-goers would want to join his team?

"They wouldn't know if I would be there, not that I'm

transformers.set_seed(2)1
print(generator("It's the holidays so I'm going to enjoy")[0]["generated_text"])2

It's the holidays so I'm going to enjoy it. It's also a good holiday or we're going to go
back and play soccer."

If Murgatroyd are to sign a deal with the club this summer, it is
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Reading the course profile
context = """1
StoryWall Formative Discussions: An initial StoryWall, worth 2%, is due by noon on June 2
The project will be submitted in stages: draft due at noon on July 1 (10%), recorded pre3

4
As a student at UNSW you are expected to display academic integrity in your work and int5
To assist you in understanding what academic integrity means, and how to ensure that you 6

7
StoryWall (30%)8

9
The StoryWall format will be used for small weekly questions. Each week of questions wil10

11
Project (40%)12

13
Over the term, students will complete an individual project. There will be a selection o14

15
The deliverables for the project will include: a draft/progress report mid-way through t16

17
Exam (30%)18

19
The exam will test the concepts presented in the lectures. For example, students will be 20
"""21
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Question answering
qa = pipeline("question-answering", model="distilbert-base-cased-distilled-squad", revis1

qa(question="What weight is the exam?", context=context)1

{'score': 0.5019668340682983, 'start': 2092, 'end': 2095, 'answer': '30%'}

qa(question="What topics are in the exam?", context=context)1

{'score': 0.2127601057291031,
'start': 1778,
'end': 1791,
'answer': 'deep learning'}

qa(question="When is the presentation due?", context=context)1

{'score': 0.5296486020088196,
'start': 1319,
'end': 1335,
'answer': 'Monday at midday'}

qa(question="How many StoryWall tasks are there?", context=context)1

{'score': 0.21390895545482635, 'start': 1155, 'end': 1158, 'answer': '30%'}
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ChatGPT is Transformer + RLHF

At the time of writing, there is no official paper that describes

how ChatGPT works in detail, but from the official blog post we

know that it uses a technique called reinforcement learning from

human feedback (RLHF) to fine-tune the GPT-3.5 model.

While ChatGPT still has many limitations (such as sometimes

“hallucinating” factually incorrect information), it is a powerful

example of how Transformers can be used to build generative

models that can produce complex, long-ranging, and novel

output that is often indistinguishable from human-generated

text. The progress made thus far by models like ChatGPT serves

as a testament to the potential of AI and its transformative impact

on the world.

Source: David Foster (2023), Generative Deep Learning, 2nd Edition, O’Reilly Media, Chapter 9.
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ChatGPT internals

It uses a fair bit of human feedback

Source: .OpenAI blog
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https://openai.com/blog/chatgpt


Recommended reading
The Verge (2022), 

Vaswani et al. (2017), , NeurIPS

Bommasani et al. (2021), 

Gary Marcus (2022), , Nautilus article

Super Data Science episode 564, 

Super Data Science episode 559, 

Computerphile (2019),  (20m)

Computerphile (2020),  (25m)

Nicholas Renotte (2021),  (33m)

Seattle Applied Deep Learning (2019),  (28m)

The Great Fiction of AI: The strange world of high-speed semi-automated genre

fiction

Attention Is All You Need

On the Opportunities and Risks of Foundation Models

Deep Learning Is Hitting a Wall

Clem Delangue on Hugging Face and Transformers

GPT-3 for Natural Language Processing

AI Language Models & Transformers

GPT3: An Even Bigger Language Model

AI Blog Post Summarization with Hugging Face Transformers…

LSTM is dead. Long Live Transformers!
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https://www.theverge.com/c/23194235/ai-fiction-writing-amazon-kindle-sudowrite-jasper
https://www.theverge.com/c/23194235/ai-fiction-writing-amazon-kindle-sudowrite-jasper
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/2108.07258.pdf
https://nautil.us/deep-learning-is-hitting-a-wall-14467/
https://podcasts.apple.com/au/podcast/super-data-science/id1163599059?i=1000556643700
https://podcasts.apple.com/au/podcast/super-data-science/id1163599059?i=1000554847681
https://youtu.be/rURRYI66E54
https://youtu.be/_8yVOC4ciXc
https://youtu.be/JctmnczWg0U
https://youtu.be/S27pHKBEp30
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Reverse-engineering a CNN
A CNN is a function  that takes a vector (image)  and returns a

vector (distribution) .

Normally, we train it by modifying  so that

However, it is possible to not train the network but to modify , like

This is very slow as we do gradient descent every single time.

f ​(x)θ x
​y

θ

θ   = ∗
​ Loss(f ​(x), y).

θ

argmin θ

x

x   = ∗
​ Loss(f ​(x), y).

x
argmin θ
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Adversarial examples

A demonstration of fast adversarial example generation applied to GoogLeNet on ImageNet. By

adding an imperceptibly small vector whose elements are equal to the sign of the elements of the

gradient of the cost function with respect to the input, we can change GoogLeNet’s classification of

the image.

Source: Goodfellow et al. (2015), , ICLR.Explaining and Harnessing Adversarial Examples
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https://arxiv.org/pdf/1412.6572.pdf


Adversarial stickers

Adversarial stickers.

Source: The Verge (2018), .These stickers make computer vision software hallucinate things that aren’t there
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https://www.theverge.com/2018/1/3/16844842/ai-computer-vision-trick-adversarial-patches-google


Adversarial text

“  🐙 is a Python framework for adversarial attacks, data

augmentation, and model training in NLP”

Demo

TextAttack
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https://github.com/QData/TextAttack


Deep Dream

Deep Dream is an image-modification program released by Google in 2015.

Source: Wikipedia, .DeepDream page
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https://commons.wikimedia.org/wiki/File:Aurelia-aurita-3-0009.jpg


DeepDream

Even though many deep learning models are black boxes, convnets

are quite interpretable via visualization. Some visualization

techniques are: visualizing convnet outputs shows how convnet

layers transform the input, visualizing convnet filters shows what

visual patterns or concept each filter is receptive to, etc.

The activations of the first few layers of the network carries more

information about the visual contents, while deeper layers encode

higher, more abstract concepts.
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DeepDream

Each filter is receptive to a visual pattern. To visualize a convnet

filter, gradient ascent is used to maximise the response of the filter.

Gradient ascent maximize a loss function and moves the image in a

direction that activate the filter more strongly to enhance its

reading of the visual pattern.

DeepDream maximizes the activation of the entire convnet layer

rather than that of a specific filter, thus mixing together many

visual patterns all at once.

DeepDream starts with an existing image, latches on to preexisting

visual patterns, distorting elements of the image in a somewhat

artistic fashion.
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Original

A sunny day on the Mornington peninsula.
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Transformed

Deep-dreaming version.

Generated by .Keras’ Deep Dream tutorial
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https://keras.io/examples/generative/deep_dream/
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Neural style transfer
Applying the style of a reference image to a target image while

conserving the content of the target image.

An example neural style transfer.

Source: François Chollet (2021), Deep Learning with Python, Second Edition, Figure 12.9.
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Goal of NST

What the model does:

Preserve content by maintaining similar deeper layer activations

between the original image and the generated image. The convnet

should “see” both the original image and the generated image as

containing the same things.

Preserve style by maintaining similar correlations within

activations for both low level layers and high-level layers. Feature

correlations within a layer capture textures: the generated image

and the style-reference image should share the same textures at

different spatial scales.
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A wanderer in Greenland

Content Style

Some striking young hiker in Greenland. Wanderer above the Sea of Fog by Caspar David

Friedrich.

Source: Laub (2018), , Blog post.On Neural Style Transfer
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https://pat-laub.github.io/2018/01/07/neural-style-transfer.html


A wanderer in Greenland II

How would you make this faster for one specific style image?

Animation of NST in progress. One result of NST.

Question

Source: Laub (2018), , Blog post.On Neural Style Transfer
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https://pat-laub.github.io/2018/01/07/neural-style-transfer.html


A new style image

Hokusai’s Great Wave off Kanagawa

Source: Laub (2018), , Blog post.On Neural Style Transfer
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https://pat-laub.github.io/2018/01/07/neural-style-transfer.html


A new content image

The seascape in Qingdao

Source: Laub (2018), , Blog post.On Neural Style Transfer
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https://pat-laub.github.io/2018/01/07/neural-style-transfer.html


Another neural style transfer

The seascape in Qingdao in the style of Hokusai’s Great Wave off Kanagawa

Source: Laub (2018), , Blog post.On Neural Style Transfer
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https://pat-laub.github.io/2018/01/07/neural-style-transfer.html


Why is this important?
Taking derivatives with respect to the input image can be a first step

toward explainable AI for convolutional networks.

Saliency maps

Grad-CAM
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https://youtu.be/y8cwyeccuy4
https://youtu.be/xGZfAoh0xKs
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Autoencoder

An autoencoder takes a data/image, maps it to a latent space via an

encoder module, then decodes it back to an output with the same

dimensions via a decoder module.

Schematic of an autoencoder.

Source: Marcus Lautier (2022).
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Autoencoder II

An autoencoder is trained by using the same image as both the

input and the target, meaning an autoencoder learns to reconstruct

the original inputs. Therefore it’s not supervised learning, but self-

supervised learning.

If we impose constraints on the encoders to be low-dimensional

and sparse, the input data will be compressed into fewer bits of

information.

Latent space is a place that stores low-dimensional representation

of data. It can be used for data compression, where data is

compressed to a point in a latent space.

An image can be compressed into a latent representation, which

can then be reconstructed back to a slightly different image.
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Example: Hand-written characters

plt.imshow(X_train[0], cmap="gray");1 plt.imshow(X_train[80], cmap="gray");1
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A compression game
plt.imshow(X_train[42], cmap="gray");1
print(img_width * img_height)2

6400
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Make a basic autoencoder
num_hidden_layer = 4001
print(f"Compress from {img_height * img_width} pixels to {num_hidden_layer} latent varia2

Compress from 6400 pixels to 400 latent variables.

random.seed(123)1
2

model = keras.models.Sequential([3
    layers.Input((img_height, img_width, 1)),4
    layers.Flatten(),5
    layers.Dense(num_hidden_layer, "relu"),6
    layers.Dense(img_height*img_width, "sigmoid"),7
    layers.Reshape((img_height, img_width, 1)),8
])9

10
model.compile("adam", "binary_crossentropy")11
epochs = 1_00012
es = keras.callbacks.EarlyStopping(patience=15, restore_best_weights=True)13
model.fit(X_train, X_train, epochs=epochs, verbose=0,14
    validation_data=(X_val, X_val), callbacks=es);15
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The model
model.summary()1

Model: "sequential"

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓

┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃

┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩

│ flatten (Flatten)               │ (None, 6400)           │             0 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ dense (Dense)                   │ (None, 400)            │     2,560,400 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ dense_1 (Dense)                 │ (None, 6400)           │     2,566,400 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ reshape (Reshape)               │ (None, 80, 80, 1)      │             0 │

└─────────────────────────────────┴────────────────────────┴───────────────┘

 Total params: 15,380,402 (58.67 MB)

 Trainable params: 5,126,800 (19.56 MB)

 Non-trainable params: 0 (0.00 B)

 Optimizer params: 10,253,602 (39.11 MB)

model.evaluate(X_val, X_val, verbose=0)1

0.20443251729011536
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Some recovered image
X_val_rec = model(X_val)1

plt.imshow(X_val[42], cmap="gray");1 plt.imshow(X_val_rec[42], cmap="gray");1
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Try downscaling the images a bit first (2x)

model.evaluate(X_val, X_val, verbose=0)1

0.2075098305940628
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Some recovered image
X_val_rec = model(X_val)1

plt.imshow(X_val[42], cmap="gray");1 plt.imshow(X_val_rec[42], cmap="gray");1
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Invert the images
plt.imshow(1 - X_train[0], cmap="gray")1 plt.imshow(1 - X_train[42], cmap="gray"1

49 / 67



random.seed(123)1
2

model = keras.models.Sequential([3
    layers.Input((img_height, img_width, 1)),4
    layers.Lambda(lambda x: 1 - x),5
    layers.Flatten(),6
    layers.Dense(num_hidden_layer, "relu"),7
    layers.Dense(img_height*img_width, "sigmoid"),8
    layers.Lambda(lambda x: 1 - x),9
    layers.Reshape((img_height, img_width, 1)),10
])11

12
model.compile("adam", "binary_crossentropy")13
es = keras.callbacks.EarlyStopping(patience=15, restore_best_weights=True)14
model.fit(X_train, X_train, epochs=epochs, verbose=0,15
    validation_data=(X_val, X_val), callbacks=es);16
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model.summary()1

Model: "sequential_3"

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓

┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃

┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩

│ lambda (Lambda)                 │ (None, 80, 80, 1)      │             0 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ flatten_2 (Flatten)             │ (None, 6400)           │             0 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ dense_4 (Dense)                 │ (None, 400)            │     2,560,400 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ dense_5 (Dense)                 │ (None, 6400)           │     2,566,400 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ lambda_1 (Lambda)               │ (None, 6400)           │             0 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ reshape_2 (Reshape)             │ (None, 80, 80, 1)      │             0 │

└─────────────────────────────────┴────────────────────────┴───────────────┘

 Total params: 15,380,402 (58.67 MB)

 Trainable params: 5,126,800 (19.56 MB)

 Non-trainable params: 0 (0.00 B)

 Optimizer params: 10,253,602 (39.11 MB)

model.evaluate(X_val, X_val, verbose=0)1

0.20058150589466095
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Some recovered image
X_val_rec = model(X_val)1

plt.imshow(X_val[42], cmap="gray");1 plt.imshow(X_val_rec[42], cmap="gray");1
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CNN-enhanced encoder
random.seed(123)1
encoder = keras.models.Sequential([2
    layers.Input((img_height, img_width, 1)),3
    layers.Lambda(lambda x: 1 - x),4
    layers.Conv2D(16, 3, padding="same", activation="relu"),5
    layers.MaxPooling2D(),6
    layers.Conv2D(32, 3, padding="same", activation="relu"),7
    layers.MaxPooling2D(),8
    layers.Conv2D(64, 3, padding="same", activation="relu"),9
    layers.MaxPooling2D(),10
    layers.Flatten(),11
    layers.Dense(num_hidden_layer, "relu")12
])13
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decoder = keras.models.Sequential([1
    keras.Input(shape=(num_hidden_layer,)),2
    layers.Dense(6400),3
    layers.Reshape((20, 20, 16)),4
    layers.Conv2D(256, 3, padding="same", activation="relu"),5
    layers.UpSampling2D(),6
    layers.Conv2D(128, 3, padding="same", activation="relu"),7
    layers.UpSampling2D(),   8
    layers.Conv2D(64, 3, padding="same", activation="relu"),                 9
    layers.Conv2D(1, 1, padding="same", activation="relu"),10
    layers.Lambda(lambda x: 1 - x),11
])12
model = keras.models.Sequential([encoder, decoder])13
model.compile("adam", "binary_crossentropy")14
es = keras.callbacks.EarlyStopping(patience=15, restore_best_weights=True)15
model.fit(X_train, X_train, epochs=epochs, verbose=0,16
    validation_data=(X_val, X_val), callbacks=es);17
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encoder.summary()1

Model: "sequential_4"

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓

┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃

┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩

│ lambda_2 (Lambda)               │ (None, 80, 80, 1)      │             0 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ conv2d (Conv2D)                 │ (None, 80, 80, 16)     │           160 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ max_pooling2d_2 (MaxPooling2D)  │ (None, 40, 40, 16)     │             0 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ conv2d_1 (Conv2D)               │ (None, 40, 40, 32)     │         4,640 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ max_pooling2d_3 (MaxPooling2D)  │ (None, 20, 20, 32)     │             0 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ conv2d_2 (Conv2D)               │ (None, 20, 20, 64)     │        18,496 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ max_pooling2d_4 (MaxPooling2D)  │ (None, 10, 10, 64)     │             0 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ flatten_3 (Flatten)             │ (None, 6400)           │             0 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ dense_6 (Dense)                 │ (None, 400)            │     2,560,400 │

└─────────────────────────────────┴────────────────────────┴───────────────┘

 Total params: 2,583,696 (9.86 MB)

 Trainable params: 2,583,696 (9.86 MB)

 Non-trainable params: 0 (0.00 B)
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decoder.summary()1

Model: "sequential_5"

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓

┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃

┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩

│ dense_7 (Dense)                 │ (None, 6400)           │     2,566,400 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ reshape_3 (Reshape)             │ (None, 20, 20, 16)     │             0 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ conv2d_3 (Conv2D)               │ (None, 20, 20, 256)    │        37,120 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ up_sampling2d (UpSampling2D)    │ (None, 40, 40, 256)    │             0 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ conv2d_4 (Conv2D)               │ (None, 40, 40, 128)    │       295,040 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ up_sampling2d_1 (UpSampling2D)  │ (None, 80, 80, 128)    │             0 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ conv2d_5 (Conv2D)               │ (None, 80, 80, 64)     │        73,792 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ conv2d_6 (Conv2D)               │ (None, 80, 80, 1)      │            65 │

├─────────────────────────────────┼────────────────────────┼───────────────┤

│ lambda_3 (Lambda)               │ (None, 80, 80, 1)      │             0 │

└─────────────────────────────────┴────────────────────────┴───────────────┘

 Total params: 2,972,417 (11.34 MB)

 Trainable params: 2,972,417 (11.34 MB)

 Non-trainable params: 0 (0.00 B)

model.evaluate(X_val, X_val, verbose=0)1

0.19237542152404785
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Some recovered image
X_val_rec = model(X_val)1

plt.imshow(X_val[42], cmap="gray");1 plt.imshow(X_val_rec[42], cmap="gray");1
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Some recovered image
X_test_rec = model(X_test)1

plt.imshow(X_test[0], cmap="gray");1 plt.imshow(X_test_rec[0], cmap="gray");1
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Some recovered image
plt.imshow(X_test[1], cmap="gray");1 plt.imshow(X_test_rec[1], cmap="gray");1
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Latent space vs word embedding
We revisit the concept of word embedding, where words in the vocabulary are mapped into vector

representations. Words with similar meaning should lie close to one another in the word-

embedding space.

Latent space contains low-dimensional representation of data. Data/Images that are similar

should lie close in the latent space.

There are pre-trained word-embedding spaces such as those for English-language movie review,

German-language legal documents, etc. Semantic relationships between words differ for

different tasks. Similarly, the structure of latent spaces for different data sets (humans faces,

animals, etc) are different.
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Latent space vs word embedding

Given a latent space of representations, or an embedding space,

certain directions in the space may encode interesting axes of

variation in the original data.

A concept vector is a direction of variation in the data. For example

there may be a smile vector such that if  is the latent

representation of a face, then  is the representation of the

same face, smiling. We can generate an image of the person smiling

from this latent representation.

z

z + s
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Intentionally add noise to inputs
mask = rnd.random(size=X_train.shape[1:1
plt.imshow(mask * (1 - X_train[0]), cmap2

mask = rnd.random(size=X_train.shape[1:1
plt.imshow(mask * (1 - X_train[42]) * ma2
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Denoising autoencoder
Can be used to do 

Jacky Poon

feature engineering for supervised learning

problems

It is also possible to include input variables as outputs to infer

missing values or just help the model “understand” the features –

in fact the winning solution of a claims prediction Kaggle

competition heavily used denoising autoencoders together with

model stacking and ensembling – read more here.

Source: Poon (2021), , Actuaries’ Analytical Cookbook.Multitasking Risk Pricing Using Deep Learning

61 / 67

https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/discussion/44629
https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/discussion/44629
https://actuariesinstitute.github.io/cookbook/docs/multitasking_risk_pricing.html
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Variational autoencoder

Schematic of a variational autoencoder.

Source: François Chollet (2021), Deep Learning with Python, Second Edition, Figure 12.17.
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VAE schematic process

Keras code for a VAE.

Source: François Chollet (2021), Deep Learning with Python, Second Edition, Unnumbered listing in Chapter 12.

63 / 67



Focus on the decoder

Sampling new artificial images from the latent space.

Source: François Chollet (2021), Deep Learning with Python, Second Edition, Figure 12.13.
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Exploring the MNIST latent space

Example of MNIST-like images generated from the latent space.

Source: François Chollet (2021), Deep Learning with Python, Second Edition, Figure 12.18.
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Recommended Viewing
Week 8 – Practicum: Variational autoencodersWeek 8 – Practicum: Variational autoencoders

66 / 67

https://www.youtube.com/watch?v=7Rb4s9wNOmc
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Using KerasCV

Diffusion models with KerasCVDiffusion models with KerasCV
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https://www.youtube.com/watch?v=pstsh2C2roc


Package Versions
from watermark import watermark1
print(watermark(python=True, packages="keras,matplotlib,numpy,pandas,seaborn,scipy,torch2

Python implementation: CPython
Python version       : 3.11.9
IPython version      : 8.24.0

keras     : 3.3.3
matplotlib: 3.9.0
numpy     : 1.26.4
pandas    : 2.2.2
seaborn   : 0.13.2
scipy     : 1.11.0
torch     : 2.3.1
tensorflow: 2.16.1
tf_keras  : 2.16.0
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Glossary

autoencoder (variational)

beam search

bias

ChatGPT (& RLHF)

DeepDream

greedy sampling

HuggingFace

language model

latent space

neural style transfer

softmax temperature

stochastic sampling
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