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Neural networks and confidence

Say we have a neural network that classifies ducks {from rabbits.

A duck in the training set A rabbit in this training set
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New data can be different

Source: Olga Telnova, Cute Duck with Bunny Ears, Posterlounge, accessed on July 16 2024.



https://www.posterlounge.co.uk/p/755230.html
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New data can be challenging

Source: Wikimedia Commons



https://commons.wikimedia.org/wiki/Category:Rabbit%E2%80%93duck_illusion#/media/File:Canard-lapin_retouch%C3%A9.jpg
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Classifiers give us a probability

This is already a big step up compared to regression models.

9 66

However, neural networks’ “probabilities” can be overconfident.

We already saw a case of this.

See Guo et al. (2017), On Calibration of Modern Neural Networks.
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https://pat-laub.github.io/DeepLearningForActuaries/Computer-Vision/computer-vision.html#confidence-of-predictions
https://arxiv.org/pdf/1706.04599
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Key idea

e Larlier machine learning models
focused on point estimates.

e However, in many applications,
we need to understand the
distribution of the response
variable.

e Fach prediction becomes a
distribution over the possible
outcomes

An example of distributional forecasting over
the All Ordinaries Index

Source: Tomasz Wozniak (2024), LinkedIn Post, accessed on July 15 2024.
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https://www.linkedin.com/posts/tomaszwwozniak_rstats-densityforecasting-activity-7171005952463134721-ZsHl?utm_source=share&utm_medium=member_desktop
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Notation

e scalars are denoted by lowercase letters, e.g., v,

e vectors are denoted by bold lowercase letters, e.g.,

Yy = (y17°°'7yn)7

e random variables are denoted by capital letters, e.g., Y

e random vectors are denoted by bold capital letters, e.g.,

X =(X1,...,X)),

e matrices are denoted by bold uppercase non-italics letters, e.g.,

I11 « o mlp
X =

Tl « o wnp
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Regression notation

n is the number of observations, p is the number of features,

the true coefficients are 8 = (Bo, 1, - - -, 5p),

Bo 1s the intercept, g, . . ., B, are the coefficients,

B is the estimated coefficient vector,

x; = (1,21, T, - .., ) 1S the feature vector for the ith observation,
y; 1s the response variable for the ith observation,

9; 1s the predicted value for the <th observation,

probability density functions (p.d.f.), probability mass functions
(p.m.f.), cumulative distribution functions (c.d.f.).
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Traditional Regression

Multiple linear regression assumes the data-generating process is
Y, = Bo + Bizin + Bazia + ...+ BpTip + €

where e ~ N(0, 0?).

We estimate the coefficients gy, 81, . . ., 8, by minimising the sum of
squared residuals or mean squared error

n 1 n

RSS := Z(yz —9;)?, MSE := . Z(yz — 9)°,
i=1 i=1

where ; is the predicted value for the ¢th observation.

9/81
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Visualising the distribution of each Y
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The probabilistic view
Y;J ~ N(,U’za 02)

where p; = By + fizi + - - - + Bpzip, and the o is known.

The N (u, o?) normal distribution has p.d.f.

1) = e (U0,

The likelihood function is

1@ =1 \/% exp (_ (v 2—052-)2)

1=1

= U(B) = — log(2m) — 5 log(0”) — 53 > (ui — )"

11/81
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The predicted distributions
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The machine learning view

The negative log-likelihood NLL(8) := —£(8) is to be minimised:

n n 1 «
NLL(B) = 5 log(2) + 5 log(o?) + 202 (yi — pi)”.
i=1

As o2 is fixed, minimising NLL is equivalent to minimising MSE:

—~

B = argmin NLL(S)

B
1 n
— a,rgﬂrnin g log(Zﬂ') + glog(az) + 252 ;(yz — Nz’)2
1 . ’

— argmin — Z(yz — (4 ,3))

B O
= argmin MSE(y, §(X;8)).

B

13/81
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Generalised Linear Model (GLM)

The GLM is often characterised by the mean prediction:
w(e; B) = g~ ((B,z))

where g is the link function.

Common GLM distributions for the response variable include:

e Normal distribution with identity link (just MLR)
e Bernoulli distribution with logit link (logistic regression)
e Poisson distribution with log link (Poisson regression)

e Gamma distribution with log link

14 /81
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Logistic regression

A Bernoulli distribution with parameter p has p.m.1.

D ify=1 Y 1
— — 1 — y.
f(y) {1_p £ — 0 p’(1—p)

Our model is Y| X = « follows a Bernoulli distribution with
parameter

1

Tiren(-(ga 0 RS

u(z; B)

The likelihood function, using w; := u(x;; B), is

15/81
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Binary cross-entropy loss

n

L(B) = [ (0 =) ¥ = €(8) = > (vslog () + (1 — ) log(1 — ) ).

1=1

The negative log-likelihood is

n

NLL(8) = — Y (wslog(ui) + (1 - y:)log(1 — ;).

1=1
The binary cross-entropy loss is basically identical:

BOB(y, u) = — > (wilog(s) + (1~ 3:) log(1 — u)).

1=1

16 /81
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Poisson regression

A Poisson distribution with rate A has p.m.1.

~ Mexp(—A)

f(y) |

Our model is Y| X = « is Poisson distributed with parameter
p(z; B) = exp ((B, x)) -

The likelihood function is

n Yi xp(— 11
i=1 v

= {(B) = Z(_Hi + yilog(u;) — 108(%:!))-

1=1

17/81
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Poisson loss
The negative log-likelihood is

n

NLL(B) = Z(Mz — yilog(p;) + 10g(yz'!))-

1=1

The Poisson loss is

n

, 1
Poisson(y, p) = ” Z (Mz‘ —Yi 108(,%'))-

1=1

18/81
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Gamma regression

A gamma distribution with mean p and dispersion ¢ has p.d.1.

Fly; s @) = (Wﬁ)la yé e e
r(;)

Our model is Y| X = « is gamma distributed with a dispersion of ¢
and a mean of u(x; B8) = exp ((8, x)).

The likelihood function is

19/81
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Gamma loss
The negative log-likelihood is

n

1 1

¢ ¢

NLL(B) = Y L—i log(p;¢) + log T (—) - (— — 1) log(y;) + 2 ] .

i @

1=1

Since ¢ 1s a nuisance parameter

~[1 Yi - Yi
NLL(B) = [— log(u;) + —] + const llog(,uz-) + —] :
; ¢ pi¢ ; Hi

@ Note

As log(u;) = log(y;) — log(y;i /i), we could write an alternative version

NLL(8) x zn: llog(yi) - 1og(£"_) + ﬂ] o Xn: [i - log(&)] .

i—=1 g 1% i1 i 9%

20/81
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Why do actuaries use GLMSs?

e GLMs are interpretable.
e GLMs are flexible (can handle different types of response variables).

e We get the full distribution of the response variable, not just the
mean.

This last point is particularly important for analysing worst-case
scenarios.

21/81
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Stock price forecasting
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Noisy auto-regressive forecast

def noisy_autoregressive_forecast(model, X_val, sigma, suppress=False):

nmmnn

Generate a multi-step forecast using the given model.

nmmnn

multi_step = pd.Series(index=X_val.index, name="Multi Step")

# Initialize the input data for forecasting
input_data = X_val.iloc[0].values.reshape(1, -1)

for i in range(len(multi_step)):
# Ensure input_data has the correct feature names
input_df = pd.DataFrame(input_data, columns=X_val.columns)
if suppress:
next_value
else:
next_value

model.predict(input_df, verbose=0)

model.predict(input_df)

next_value += np.random.normal(®, sigma)
multi_step.iloc[i] = next_value
# Append that prediction to the input for the next forecast
if i + 1 < len(multi_step):
input_data = np.append(input_datal[:, 1:], next_value).reshape(1l, -1)

return multi_step
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Original forecast

1 1lr_forecast = noisy_autoregressive_forecast(lr, X_val, 0)

1 residuals = y_train.loc["2015":] - lr.predict(X_train.loc["2015":])
2 sigma = np.std(residuals)
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With noise

1 np.random.seed(1)
2 1lr_noisy_forecast

noisy_autoregressive_forecast(lr, X_val, sigma)
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With noise

1 np.random.seed(2)
2 1lr_noisy_forecast

noisy_autoregressive_forecast(lr, X_val, sigma)
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With noise

1 np.random.seed(3)
2 1lr_noisy_forecast

noisy_autoregressive_forecast(lr, X_val, sigma)
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Many noisy forecasts

num_forecasts = 300

forecasts = []

for i in range(num_forecasts):
forecasts.append(noisy_autoregressive_forecast(lr, X_val, sigma) * 100)

noisy forecasts = pd.concat(forecasts, axis=1)

noisy_forecasts.index = X_val.index

25/81



-y

05% “prediction intervals”

# Calculate quantiles for the forecasts

lower_quantile = noisy_forecasts.quantile(0.025, axis=1)
upper_quantile noisy_forecasts.quantile(0.975, axis=1)
mean_forecast = noisy_forecasts.mean(axis=1)

26 /81
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Residuals

y_pred = lr.predict(X_train)
residuals = y_train - y_pred
residuals -= np.mean(residuals)
residuals /A~ np.std(residuals)
stats.shapiro(residuals)

/home/plaub/miniconda3/envs/ai2024/1ib/python:

packages/scipy/stats/_morestats.py:1882:
UserWarning: p-value may not be accurate for
N > 5000.

warnings.warn("p-value may not be accurate
for N > 5000.")

ShapiroResult(statistic=0.9038059115409851,
pvalue=0.0)

27 /81
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0-0 plot and P-P plot
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Residuals against time

Heteroskedasticity!
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French motor claim sizes

sev
cov
sev
sev

pd.read_csv('freMTPL2sev.csv')
pd.read_csv('freMTPL2freq.csv').drop(columns=["'ClaimNb'])
pd.merge(sev, cov, on='IDpol', how='left').drop(columns=["IDpol"]).dropna()

ClaimAmount Exposure VehPower VehAge DrivAge

0 005.20 0.59 11.0 0.0 39.0
1 1128.12 0.95 4.0 1.0 49.0
26637 767.55 0.43 6.0 0.0 67.0
26638 1500.00 0.28 7.0 2.0 36.0

26444 TOWS % 11 columns

29/81
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Preprocessing

X_train, X_test, y_train, y_test = train_test_split(
sev.drop("ClaimAmount", axis=1), sev["ClaimAmount"], random_state=2023)
ct = make_column_transformer((OrdinalEncoder(), ["Area", "VehGas"]),
("drop", ["VvehBrand", "Region"]), remainder=StandardScaler())
X_train = ct.fit_transform(X_train)
X_test = ct.transform(X_test)
plt.hist(y_train[y_train < 5000], bins=30);

30/81
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Doesn’t prove that Y| X = « is multimodal
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Gamma GLM

Suppose a fitted gamma GLM model has
e alog link function g(x) = log(x) and

e regression coefficients 8 = (B, 51, B2, B3).

Then, it estimates the conditional mean of Y given a new instance
x = (1,z1, 2, x3) as follows:

EY|X =] = g_l(<,37 x)) = exp (50 + Biz1 + betasxa + 535133)-

A GLM can model any other exponential family distribution using an
appropriate link function g.

32/81
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Gamma GLM loss

[[Y|X = «is agamma r.v. with mean u(x; 8) and dispersion
parameter ¢, we can minimise the negative log-likelihood (NLL)

Yi
M(wz‘; 5)

-+ const,

NLL o< Zlog p(xz; B) +
i=1

i.e., we ignore the dispersion parameter ¢ while estimating the
regression coefficients.

33/81
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Fitting Steps

Step 1. Use the advanced second derivative iterative method to find
the regression coefficients:

—_~

- Yi
B = arg min log (x5 B) +
B ; p(zi; B)

Step 2. Estimate the dispersion parameter:

n 2

oo ! 3 (vi — p(zi; B))

n—pZs p(@iB)

(Here, p is the number of coefficients in the model. If this p doesn’t

include the intercept, then p should be use — (110 =y )

34 /81
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Code: Gamma GLM

In Python, we can fit a gamma GLM as follows:

import statsmodels.api as sm

# Add a column of ones to include an intercept in the model

X_train_design = sm.add_constant(X_train)

# Create a Gamma GLM with a log link function

gamma_glm = sm.GLM(y_train, X_train_design,

family=sm.families.Gamma(sm.families.links.Log()))

# Fit the model
gamma_glm = gamma_glm.fit()

gamma_glm.params

const 7.786576
ordinalencoder__Area -0.073226
remainder__BonusMalus 0.157204
remainder__Density 0.010539

Length: 9, dtype: float64

# Dispersion Parameter
mus = gamma_glm.predict(X_train_design)
residuals = y_train - mus

dof = (len(y_train)-X_train_design.shap
phi_glm = np.sum(residuals#**2/mus**2)/d

print(phi_glm)

59.63363123735805

35/81



ANN can feed into a GLM

Combining GLM & ANN.
I;ISche: Ronald Richman (2022), Mind the Gap - Safely Incorporating Deep Learning Models into the Actuarial Toolkit, IFoA seminar, Slide




-y

36/81

Lecture Outline

¢ Introduction

e Traditional Regression

e Stochastic Forecasts

¢ GLMs and Neural Networks

e Combined Actuarial Neural Network
e Mixture Density Network

e Metrics for Distributional Regression
e Aleatoric and Epistemic Uncertainty
e Avoiding Overfitting

e Dropout

e [knsembles



-y

CANN

The Combined Actuarial Neural Network is a novel actuarial neural

network architecture proposed by Schelldorfer and Wiithrich (2019).

We summarise the CANN approach as follows:

e Find the coefficients 8 of the GLM with a link function g(+).
e ['ind the weights wcany 0f @ neural network Meany : R?P — R.

e (Given a new instance x, we have

E[Y|X = 2] = g7 ((8,) + Moann(®; woany)).

371/81


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3320525
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Shifting the predicted distributions




Architecture

The CANN architecture.
];l / Source: Schelldorfer and Wiithrich (2019), Nesting Classical Actuarial Models into Neural Networks, SSRN, Figure 8.



https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3320525
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Code: Architecture

random.seed(1)
inputs = Input(shape=X_train.shape[1:])

# GLM part (won't be updated during training)

glm_weights = gamma_glm.params.iloc[1:].values.reshape((-1, 1))

glm_bias = gamma_glm.params.iloc[0]

glm_part Dense(1, activation='linear', trainable=False,
kernel_initializer=Constant(glm_weights),
bias_initializer=Constant(glm_bias))(inputs)

# Neural network part
x = Dense(64, activation="'leaky relu')(inputs)
nn_part = Dense(1, activation='linear')(x)

# Combine GLM and CANN estimates

mu = keras.ops.exp(glm_part + nn_part)
cann = Model(inputs, mu)

Since this CANN predicts gamma distributions, we use the gamma
NLL loss function.

def cann_negative_log_likelihood(y_true, y_pred):
return keras.ops.mean(keras.ops.log(y_pred) + y_true/y_pred)
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Code: Model Training

cann.compile(optimizer="adam", loss=cann_negative_log_likelihood)
hist = cann.fit(X_train, y_train,

epochs=100,

callbacks=[EarlyStopping(patience=10)],

verbose=0,

batch_size=64,

validation_split=0.2)

Find the dispersion parameter.

mus = cann.predict(X_train, verbose=0).flatten()
residuals = y_train - mus

dof = (len(y_train)-(X_train.shape[1] + 1))
phi_cann = np.sum(residuals#**2/mus**2) / dof
print(phi_cann)

31.171623242378978

41/81
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Mixture Distribution

Given a finite set of resulting random variables (Y3, ..., Yx), one can
generate a multinomial random variable Y ~ Multinomial(1, ).
Meanwhile, Y can be regarded as a mixture of Y3, ..., Yx, L.e.,
( le W.p. 71,
Y =

\YK wW.p. Tk,

where we define a set of finite set of weights # = (71 ..., 7x) such
thatm, > 0fork € {1,...,K}and 3, m = 1.
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Mixture Distribution

Let fy, x and Fy, x be the p.d.f. and the c.d.f ol ;| X forall k£ €
{1,...,K}.

The random variable Y| X, which mixes Y;| X’s with weights 7;’s, has

the density function

K

frix(yle) = Zwk(w)fk(ykn),

k=1

and the cumulative density function

K

Fy x(y|z) = Zﬁk(fB)Fk(y\w)-

43 /81
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Mixture Density Network

A mixture density network (MDN) M,,- outputs each distribution
component’s mixing weights and parameters of Y given the input
features z, i.e.,

M () = (7(z; w"), O(z; w")),

where w* is the networks’ weights found by minimising the following
negative log-likelihood loss function

L(D,0) = — Zlog frx (yile, w*),
i=1

where D = {(x;, y;) }*_; 1s the training dataset.

44 /81



Mixture Density Network

An MDN that outputs the parameters for a K component mixture distribution. 8;(z; w*) =
(Op1 (5 w*), ..., 06, (z; w*)) consists of the parameter estimates for the kth mixture component.

-y
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Model Specification

Suppose there are two types of claims:

e Typel: Y| X = & ~ Gamma(a;(x), 51 («)) and,
e TypeIl: V3| X = & ~ Gamma(asy(x), B2(x)).

The density of the actual claim amount Y| X = @ follows

a1 (x)
fY!X(y‘w) — 7T1(:13) . ?1((:1)(213)) e—ﬁl(w)yyal(az)_l

as(x)
+ (1 - 7T1(:B)) . 52(%) 6_52(w)yya2(w)—1.

[(az(z))

where 7 (@) 1s the probability of a Type I claim given .

46 /81
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Output

The aim is to find the optimum weights

w* = argmin L(D, w)

for the Gamma mixture density network M, that outputs the mixing
weights, shapes and scales of Y given the input features z, i.e.,

47181



Architecture

We demonstrate the structure of a gamma MDN that outputs the parameters for a gamma mixture
with two components.
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Code: Import “legacy” Keras (for now)

1 import tf_keras

Source: Tensorflow Probability GitHub, Keras 3 breaks Tensorflow Probability upon import, issue #1774.



https://github.com/tensorflow/probability/issues/1774#issuecomment-1841706103
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Code: Architecture

The following code resembles the architecture of the architecture of
the gamma MDN [rom the previous slide.

# Ensure reproducibility
random.seed(1);

inputs = tf_keras.layers.Input(shape=X_train.shape[1:])
# Two hidden layers

x = tf_keras.layers.Dense(64, activation="relu')(inputs)
x = tf_keras.layers.Dense(64, activation="relu')(x)

pis = tf_keras.layers.Dense(2, activation='softmax')(x) # Mixing weights

alphas = tf_keras.layers.Dense(2, activation='exponential')(x) # Shape parameters
betas = tf_keras.layers.Dense(2, activation='exponential')(x) # Scale parameters
out = tf_keras.layers.Concatenate(axis=1)([pis, alphas, betas]) # shape = (None, 6)

gamma_mdn = tf_keras.Model(inputs, out)

50/81
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[.oss Function

The negative log-likelihood loss function is given by
1 n
‘C(D7 w) — _E Z log fY|X(yi‘w7 ’UJ)
1=1

where the fy x (y;|z, w) is defined by

. 51(w;w)a1(w;'w) —B1(z;w)y, o1 (x2;w)—1
mEO) Pa@w) ¢
BZ(w; w)az(az;w) e—ﬂ2(w;'w)yya2(w;'w)—1
(s (x; w))

+ (1 — m(x; w)) -

51/81
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Code: Loss & training

tensorflow probability to the rescue.

import tensorflow_probability as tfp
tfd = tfp.distributions

def gamma_mixture_nll(y_true, y_pred):

K = y_pred.shape[1] // 3

pis = y_pred[:, :K]

alphas = y_pred[:, K:2%K]

betas = y_pred[:, 2*K:3%K]

mixture_distribution = tfd.MixtureSameFamily(
mixture_distribution=tfd.Categorical(probs=pis),
components_distribution=tfd.Gamma(alphas, betas))

return -tf_keras.backend.mean(mixture_distribution.log_prob(y_true))

gamma_mdn.compile(optimizer="adam", loss=gamma_mixture_nll)

hist = gamma_mdn.fit(X_train, y_train,
epochs=100,
callbacks=[tf_keras.callbacks.EarlyStopping(patience=10)],
verbose=0,
batch_size=64,
validation_split=0.2)
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Proper Scoring Rules

Definition

A scoring rule is the equivalent of a loss function for
distributional regression.

Denote S(F,y) to be the score given to the forecasted
distribution F' and an observation y € R.

Definition

A scoring rule is called proper it
Ey-05(Q,Y) < Ey_gS(F,Y)

for all F and @ distributions.
[t is called strictly proper if equality holds only if F = Q.

53/81



-y

Example Proper Scoring Rules
Logarithmic Score (NLL)

The logarithmic score is defined as

LogS(f,y) = —log f(y),

where f is the predictive density.
Continuous Ranked Probability Score (CRPS)

The continuous ranked probability score is defined as

©.0)

crps(F,y) = / (F(t) — 145,)* dt,

— 00

where F is the predicted c.d.f.

See, e.g., Taggert (2023), Estimation of CRPS for precipitation forecasts..., BoM Research Report 079.

54 /81
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Likelihoods
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Code: NLL

def gamma_nll(mean, dispersion, y):
# Calculate shape and scale parameters from mean and dispersion
shape = 1 / dispersion; scale = mean * dispersion

# Create a gamma distribution object
gamma_dist = stats.gamma(a=shape, scale=scale)

return -np.mean(gamma_dist.logpdf(y))

# GILM

X_test_design = sm.add_constant(X_test)
mus = gamma_glm.predict(X_test_design)
nll_glm = gamma_nll(mus, phi_glm, y_test)

# CANN

mus = cann.predict(X_test, verbose=0)
nll_cann = gamma_nll(mus, phi_cann, y_test)

# MDN
nll_mdn = gamma_mdn.evaluate(X_test, y_test, verbose=0)
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Model Comparisons

1 print(f'GLM: {round(nll_glm, 2)}')
2 print(f'CANN: {round(nll_cann, 2)}')
3 print(f'MDN: {round(nll_mdn, 2)}")

GLM: 11.02
CANN: 10.44
MDN: 8.67
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Categories of uncertainty

There are two major categories of uncertainty in statistical or
machine learning:
e Aleatoric uncertainty

e Epistemic uncertainty

Since there is no consensus on the definitions of aleatoric and
epistemic uncertainty, we provide the most acknowledged definitions
in the following slides.
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Aleatoric Uncertainty

Qualitative Definition

Aleatoric uncertainty refers to the statistical variability and

inherent noise with data distribution that modelling cannot explain.

Quantitative Definition

Ale(Y|X =) =V|Y|X =z,

i.e., il Y|X =2 ~ N(u,c?), the aleatoric uncertainty would be o2

. Simply, it is the conditional variance of the response variable Y
given features/covariates .
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Epistemic Uncertainty

Qualitative Definition

Epistemic uncertainty refers to the lack of knowledge, limited data
information, parameter errors and model errors.

Quantitative Definition

Epi(Y|X = @) = Uncertainty(Y|X =) — Ale(Y | X = x),

1.e., the total uncertainty subtracting the aleatoric uncertainty
VY| X = @] would be the epistemic uncertainty.
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Sources of uncertainty

If vou decide to predict the claim amount of an individual using a deep
learning model, which source(s) of uncertainty are you dealing with?

1. The inherent variability of the data-generating process — aleatoric
uncertainty.

2. Parameter error — epistemic uncertainty.
3. Model error — epistemic uncertainty.

4. Data uncertainty — epistemic uncertainty.
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Traditional regularisation

Say all the m weights (excluding biases) are in the vector 6. If we
change the loss function to

1 & -
Lossy., = — Z Loss; + A Z 10;]
n
i=1 j=1

this would be using L' regularisation. A loss like

1 n m
Lossy.,, = - Z Loss; + A Z 9?-
i=1 j=1

is called L? regularisation.
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Regularisation in Keras

from keras.regularizers import L1, L2

def 11_model(regulariser_strength=0.01):
random.seed(123)

model = Sequential([
Dense(30, activation="Tleaky relu",
kernel_regularizer=L1(regulariser_strength)),

Dense(1, activation="exponential™)

D

model.compile("adam", "mse")
model.fit(X_train_sc, y_train, epochs=4, verbose=0)

return model

def 12_model(regulariser_strength=0.01):

random.seed(123)
model = Sequential([
Dense(30, activation="Tleaky_ relu",
kernel_regularizer=L2(regulariser_strength)),

Dense(1, activation="exponential")

D

model.compile("adam", "mse"
model.fit(X_train_sc, y_train, epochs=10, verbose=0)

return model

63 /81



-y

Weights before & after L?

model = 12_model(0.0)

weights = model.layers[0].get_weights()
print(f"Number of weights almost 0: {np
plt.hist(weights, bins=100);

Number of weights almost 0: 0

model = 12_model(1.0)

weights = model.layers[0].get_weights()
print(f"Number of weights almost 0: {np
plt.hist(weights, bins=100);

Number of weights almost 0: 0
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Weights before & after L!

model = 11_model(0.0) model = 11_model(1.0)

weights = model.layers[0].get_weights() weights =

= model.layers[0].get_weights()
print(f"Number of weights almost 0: {np print(f"Number of weights almost 0: {np
plt.hist(weights, bins=100);

plt.hist(weights, bins=100);

Number of weights almost 0: 0 Number of weights almost 0: 36
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Early-stopping regularisation

A very different way to regularize iterative learning algorithms
such as gradient descent is to stop training as soon as the
validation error reaches a minimum. This is called early
stopping... It is such a simple and efficient regularization
technique that Geoflfrey Hinton called it a “beautiful free lunch”.

Alternatively, you can try building a model with slightly more
layers and neurons than you actually need, then use early
stopping and other regularization techniques to prevent it from
overfitting too much. Vincent Vanhoucke, a scientist at Google,
has dubbed this the “stretch pants” approach: instead of wasting
time looking for pants that perfectly match your size, just use
large stretch pants that will shrink down to the right size.

Q / Source: Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition, Chapters 4 and 10.
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Dropout

An example of neurons dropped during training.
];l / Sources: Marcus Lautier (2022).
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Dropout quote #1

[U’s surprising at first that this destructive technique works at all.
Would a company perform better if its employees were told to
toss a coin every morning to decide whether or not to go to work?
Well, who knows; perhaps it would! The company would be forced
to adapt its organization; it could not rely on any single person to
work the coffee machine or perform any other critical tasks, so
this expertise would have to be spread across several people.

Employees would have to learn to cooperate with many of their
coworkers, not just a handful of them.

Q / Source: Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, p. 366
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Dropout quote #2

The company would become much more resilient. If one person
quit, it wouldn’t make much of a difference. It’s unclear whether
this idea would actually work for companies, but it certainly does
for neural networks. Neurons trained with dropout cannot co-
adapt with their neighboring neurons; they have to be as useful as
possible on their own. They also cannot rely excessively on just a
few input neurons; they must pay attention to each of their input
neurons. They end up being less sensitive to slight changes in the
inputs. In the end, you get a more robust network that
generalizes better.

Q / Source: Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, p. 366
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Code: Dropout

Dropout is just another layer in Keras.

from keras.layers import Dropout
random.seed(2);

model = Sequential([
Dense(30, activation="leaky relu"),
Dropout(0.2),
Dense(30, activation="Tleaky relu"),
Dropout(0.2),
Dense(1, activation="exponential")

D

model.compile("adam", "mse"
model.fit(X_train_sc, y_train, epochs=4, verbose=0);
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Code: Dropout after training

Making predictions is the same as any other model:

model.predict(X_train_sc.head(3),

verbose=0) verbose=0)
array([[1.0587903], array([[1.0587903],
[1.2814349], [1.2814349],
[0.9994641]1], dtype=float32) [0.9994641]], dtype=float32)

We can make the model think it is still training:

model(X_train_sc.head(3), model(X_train_sc.head(3),
training=True).numpy() training=True).numpy()
array([[1.082524 1], array([[1.0132376],
[0.74211466], [1.2697867],
[1.1583111 ]], dtype=float32) [0.7800578]], dtype=float32)

model.predict(X_train_sc.head(3),
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Dropout Limitation

e Increased Training Time: Since dropout introduces noise into the
training process, it can make the training process slower.

e Sensitivity to Dropout Rates: the performance of dropout is highly
dependent on the chosen dropout rate.
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Accidental dropout (“dead neurons”)
My first ANN for California housing

random.seed(123)

model = Sequential([
Dense(30, activation="relu"),
Dense(1)

1)

model.compile("adam", "mse")

hist = model.fit(X_train, y_train,
epochs=5, verbose=0)

hist.history["loss"]

[25089.478515625,
12.956829071044922,
13.395614624023438,
7.074806213378906),
5.800335884094238]
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Find dead ReLU neurons

acts =

model.layers[0](X_train).numpy()

print(X_train.shape, acts.shape)
acts[:3]

(12384, 8) (12384, 30)

array([[261.
398.

[ 18.

58.

[266
411

dead =

458 , 502.33704 , 93.64283 , ..., 537.54865 , 325.7366
99435 1],

983932, 52.9067 , O. . ..., 28.361092, 10.988864,
1945957,

.2954 , 517.58154 , 98.64309 , ..., 553.68005 , 336.69986 ,
.61124 1], dtype=float32)

acts.mean(axis=0) = 0

np.sum(dead)

7
idx = np.where(dead)[0][0]
acts[:, idx-1:idx+2]
array([[ 0. , 0. , 0. 1,
[18.991873, 0. , 0. 1,
[ 0. , 0. , 0. 1,
[ 0. , 0 , 0. 1,
[ 0. , 0 , 0. 1,
[ 0. , O , 0. 1], dtype=float32)
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Trying different seeds

Create a function which counts the number of dead Rel.U neurons in
the first hidden layer for a given seed:

def count_dead(seed):
random.seed(seed)
hidden = Dense(30, activation="relu")
acts = hidden(X_train).numpy()
return np.sum(acts.mean(axis=0) = 0)

Then we can try out different seeds:

num_dead = [count_dead(seed) for seed in range(1_000)]
np.median(num_dead)

5.0
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[.ook at distribution of dead Rel.Us

labels, counts = np.unique(num_dead, return_counts=True)
plt.bar(labels, counts, align='center');
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Ensembles

Combine many models to get better predictions.
];l / Source: Marcus Lautier (2022).
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Deep Ensembles

Train M neural networks with different random initial weights
independently (even in parallel).

def build _model(seed):
random.seed(seed)
model = Sequential([
Dense(30, activation="leaky relu"),
Dense(1, activation="exponential")

D

model.compile("adam", "mse")

es = EarlyStopping(restore_best_weights=True, patience=5)
model.fit(X_train_sc, y_train, epochs=1_000,

callbacks=[es], validation_data=(X_val_sc, y_val), verbose=False)
return model

M =3
seeds = range(M)
models = []

for seed in seeds:
models.append(build_model(seed))
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Deep Ensembles II

Say the trained weights by w®, ... w®) then we get predictions
M

{9(z;w™)}

y_preds = []
for model in models:
y_preds.append(model.predict(X_test_sc, verbose=0))

y_preds = np.array(y_preds)
y_preds

array([[[3.2801466 ],
[0.76298356],
[2.4068608 ],

[2.3385763 ],
[2.1730225 ],
[1.096715 11,
[[3.1832185 1,
[0.72296774],
[2.5727806 1,

[2.3812106 1,
[2.27971 1,
[1.06247 1],
[[3.0994337 ],

a J [0.77855957],

[2.6037261 1.
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Package Versions

from watermark import watermark
print(watermark(python=True, packages="keras,matplotlib,numpy,pandas,seaborn,scipy,torch

Python implementation: CPython

Python version : 3.11.9
IPython version : 8.24.0
keras : 3.3.3
matplotlib : 3.9.0
numpy : 1.26.4
pandas 10 2.2.2
seaborn : 0.13.2
scipy : 1.11.0
torch : 2.3.1
tensorflow : 2.16.1
tensorflow_probability: 0.24.0
tf_keras : 2.16.0
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Glossary

e aleatoric and epistemic
uncertainty

e combined actuarial neural
network

e deep ensembles

e dropout

generalised linear model
mixture density network
mixture distribution

proper scoring rule
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