Computer Vision

ACTL3143 & ACTL5111 Deep Learning for Actuaries

Patrick Laub

Images

Lecture Outline

  • Images

  • Convolutional Layers

  • Convolutional Layer Options

  • Convolutional Neural Networks

  • Chinese Character Recognition Dataset

  • Fitting a (multinomial) logistic regression

  • Fitting a CNN

  • Error Analysis

  • Hyperparameter tuning

  • Benchmark Problems

  • Transfer Learning

Shapes of data

Illustration of tensors of different rank.

Shapes of photos

A photo is a rank 3 tensor.

How the computer sees them

from matplotlib.image import imread
img1 = imread('pu.gif'); img2 = imread('pl.gif')
img3 = imread('pr.gif'); img4 = imread('pg.bmp')
f"Shapes are: {img1.shape}, {img2.shape}, {img3.shape}, {img4.shape}."
'Shapes are: (16, 16, 3), (16, 16, 3), (16, 16, 3), (16, 16, 3).'
img1
array([[[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0]],

       [[255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0]],

       [[255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0]],

       [[255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0]],

       [[255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0]],

       [[  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]]], dtype=uint8)
img2
array([[[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]]], dtype=uint8)
img3
array([[[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [255, 255,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]]], dtype=uint8)
img4
array([[[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [  0,   0,   0],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 255, 255],
        [255, 255, 255],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 255, 255],
        [255, 255, 255],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [  0,   0,   0]],

       [[  0,   0,   0],
        [255, 163, 177],
        [255, 163, 177],
        [255, 255, 255],
        [255, 255, 255],
        [255, 255, 255],
        [255, 255, 255],
        [255, 163, 177],
        [255, 163, 177],
        [255, 255, 255],
        [255, 255, 255],
        [255, 255, 255],
        [255, 255, 255],
        [255, 163, 177],
        [255, 163, 177],
        [  0,   0,   0]],

       [[255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 255, 255],
        [255, 255, 255],
        [255, 255, 255],
        [255, 255, 255],
        [255, 163, 177],
        [255, 163, 177],
        [255, 255, 255],
        [255, 255, 255],
        [255, 255, 255],
        [255, 255, 255],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177]],

       [[255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [ 51,   0, 255],
        [ 51,   0, 255],
        [255, 255, 255],
        [255, 255, 255],
        [255, 163, 177],
        [255, 163, 177],
        [ 51,   0, 255],
        [ 51,   0, 255],
        [255, 255, 255],
        [255, 255, 255],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177]],

       [[255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [ 51,   0, 255],
        [ 51,   0, 255],
        [255, 255, 255],
        [255, 255, 255],
        [255, 163, 177],
        [255, 163, 177],
        [ 51,   0, 255],
        [ 51,   0, 255],
        [255, 255, 255],
        [255, 255, 255],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177]],

       [[255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 255, 255],
        [255, 255, 255],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 255, 255],
        [255, 255, 255],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177]],

       [[255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177]],

       [[255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177]],

       [[255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177]],

       [[255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177]],

       [[255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [  0,   0,   0],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [  0,   0,   0],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [  0,   0,   0]],

       [[255, 163, 177],
        [255, 163, 177],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 163, 177],
        [255, 163, 177],
        [255, 163, 177],
        [  0,   0,   0],
        [  0,   0,   0]],

       [[255, 163, 177],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 163, 177],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0],
        [255, 163, 177],
        [  0,   0,   0],
        [  0,   0,   0],
        [  0,   0,   0]]], dtype=uint8)

How we see them

from matplotlib.pyplot import imshow
imshow(img1);

imshow(img2);

imshow(img3);

imshow(img4);

Why is 255 special?

Each pixel’s colour intensity is stored in one byte.

One byte is 8 bits, so in binary that is 00000000 to 11111111.

The largest unsigned number this can be is 2^8-1 = 255.

np.array([0, 1, 255, 256]).astype(np.uint8)
array([  0,   1, 255,   0], dtype=uint8)

If you had signed numbers, this would go from -128 to 127.

np.array([-128, 1, 127, 128]).astype(np.int8)
array([-128,    1,  127, -128], dtype=int8)

Alternatively, hexidecimal numbers are used. E.g. 10100001 is split into 1010 0001, and 1010=A, 0001=1, so combined it is 0xA1.

Image editing with kernels

Take a look at https://setosa.io/ev/image-kernels/.

An example of an image kernel in action.

Convolutional Layers

Lecture Outline

  • Images

  • Convolutional Layers

  • Convolutional Layer Options

  • Convolutional Neural Networks

  • Chinese Character Recognition Dataset

  • Fitting a (multinomial) logistic regression

  • Fitting a CNN

  • Error Analysis

  • Hyperparameter tuning

  • Benchmark Problems

  • Transfer Learning

‘Convolution’ not ‘complicated’

Say X_1, X_2 \sim f_X are i.i.d., and we look at S = X_1 + X_2.

The density for S is then

f_S(s) = \int_{x_1=-\infty}^{\infty} f_X(x_1) \, f_X(s-x_1) \,\mathrm{d}s .

This is the convolution operation, f_S = f_X \star f_X.

Images are rank 3 tensors

Height, width, and number of channels.

Examples of rank 3 tensors.

Grayscale image has 1 channel. RGB image has 3 channels.

Example: Yellow = Red + Green.

Example: Detecting yellow

Applying a neuron to an image pixel.


Apply a neuron to each pixel in the image.


If red/green \nearrow or blue \searrow then yellowness \nearrow.


Set RGB weights to 1, 1, -1.

Example: Detecting yellow II

Scan the 3-channel input (colour image) with the neuron to produce a 1-channel output (grayscale image).

The output is produced by sweeping the neuron over the input. This is called convolution.

Example: Detecting yellow III

The more yellow the pixel in the colour image (left), the more white it is in the grayscale image.

The neuron or its weights is called a filter. We convolve the image with a filter, i.e. a convolutional filter.

Terminology

  • The same neuron is used to sweep over the image, so we can store the weights in some shared memory and process the pixels in parallel. We say that the neurons are weight sharing.
  • In the previous example, the neuron only takes one pixel as input. Usually a larger filter containing a block of weights is used to process not only a pixel but also its neighboring pixels all at once.
  • The weights are called the filter kernels.
  • The cluster of pixels that forms the input of a filter is called its footprint.

Spatial filter

Example 3x3 filter

When a filter’s footprint is > 1 pixel, it is a spatial filter.

Multidimensional convolution

Need \# \text{ Channels in Input} = \# \text{ Channels in Filter}.

Example: a 3x3 filter with 3 channels, containing 27 weights.

Example: 3x3 filter over RGB input

Each channel is multipled separately & then added together.

Input-output relationship

Matching the original image footprints against the output location.

Convolutional Layer Options

Lecture Outline

  • Images

  • Convolutional Layers

  • Convolutional Layer Options

  • Convolutional Neural Networks

  • Chinese Character Recognition Dataset

  • Fitting a (multinomial) logistic regression

  • Fitting a CNN

  • Error Analysis

  • Hyperparameter tuning

  • Benchmark Problems

  • Transfer Learning

Padding

What happens when filters go off the edge of the input?

  • How to avoid the filter’s receptive field falling off the side of the input.
  • If we only scan the filter over places of the input where the filter can fit perfectly, it will lead to loss of information, especially after many filters.

Padding

Add a border of extra elements around the input, called padding. Normally we place zeros in all the new elements, called zero padding.

Padded values can be added to the outside of the input.

Convolution layer

  • Multiple filters are bundled together in one layer.
  • The filters are applied simultaneously and independently to the input.
  • Filters can have different footprints, but in practice we almost always use the same footprint for every filter in a convolution layer.
  • Number of channels in the output will be the same as the number of filters.

Example

In the image:

  • 6-channel input tensor
  • input pixels
  • four 3x3 filters
  • four output tensors
  • final output tensor.

Example network highlighting that the number of output channels equals the number of filters.

1x1 convolution

  • Feature reduction: Reduce the number of channels in the input tensor (removing correlated features) by using fewer filters than the number of channels in the input. This is because the number of channels in the output is always the same as number of filters.
  • 1x1 convolution: Convolution using 1x1 filters.
  • When the channels are correlated, 1x1 convolution is very effective at reducing channels without loss of information.

Example of 1x1 convolution

Example network with 1x1 convolution.

  • Input tensor contains 300 channels.
  • Use 175 1x1 filters in the convolution layer (300 weights each).
  • Each filter produces a 1-channel output.
  • Final output tensor has 175 channels.

Striding

We don’t have to go one pixel across/down at a time.

Example: Use a stride of three horizontally and two vertically.

Dimension of output will be smaller than input.

Choosing strides

When a filter scans the input step by step, it processes the same input elements multiple times. Even with larger strides, this can still happen (left image).

If we want to save time, we can choose strides that prevents input elements from being used more than once. Example (right image): 3x3 filter, stride 3 in both directions.

Specifying a convolutional layer

Need to choose:

  • number of filters,
  • their footprints (e.g. 3x3, 5x5, etc.),
  • activation functions,
  • padding & striding (optional).

All the filter weights are learned during training.

Convolutional Neural Networks

Lecture Outline

  • Images

  • Convolutional Layers

  • Convolutional Layer Options

  • Convolutional Neural Networks

  • Chinese Character Recognition Dataset

  • Fitting a (multinomial) logistic regression

  • Fitting a CNN

  • Error Analysis

  • Hyperparameter tuning

  • Benchmark Problems

  • Transfer Learning

Definition of CNN



A neural network that uses convolution layers is called a convolutional neural network.

Architecture

Typical CNN architecture.

Architecture #2

Pooling

Pooling, or downsampling, is a technique to blur a tensor.

Illustration of pool operations.

(a): Input tensor (b): Subdivide input tensor into 2x2 blocks (c): Average pooling (d): Max pooling (e): Icon for a pooling layer

Pooling for multiple channels

Pooling a multichannel input.

  • Input tensor: 6x6 with 1 channel, zero padding.
  • Convolution layer: Three 3x3 filters.
  • Convolution layer output: 6x6 with 3 channels.
  • Pooling layer: apply max pooling to each channel.
  • Pooling layer output: 3x3, 3 channels.

Why/why not use pooling?

Why? Pooling reduces the size of tensors, therefore reduces memory usage and execution time (recall that 1x1 convolution reduces the number of channels in a tensor).

Why not?

Geoffrey Hinton

What do the CNN layers learn?

Chinese Character Recognition Dataset

Lecture Outline

  • Images

  • Convolutional Layers

  • Convolutional Layer Options

  • Convolutional Neural Networks

  • Chinese Character Recognition Dataset

  • Fitting a (multinomial) logistic regression

  • Fitting a CNN

  • Error Analysis

  • Hyperparameter tuning

  • Benchmark Problems

  • Transfer Learning

MNIST Dataset

The MNIST dataset.

CASIA Chinese handwriting database

Dataset source: Institute of Automation of Chinese Academy of Sciences (CASIA)

A 13 GB dataset of 3,999,571 handwritten characters.

Inspect a subset of characters

Pulling out 55 characters to experiment with.

人从众大夫天口太因鱼犬吠哭火炎啖木林森本竹羊美羔山出女囡鸟日东月朋明肉肤工白虎门闪问闲水牛马吗妈玉王国主川舟虫

Inspect directory structure

!pip install directory_tree
from directory_tree import display_tree
display_tree("CASIA-Dataset")
CASIA-Dataset/
├── Test/
│   ├── 东/
│   │   ├── 1.png
│   │   ├── 10.png
│   │   ├── 100.png
│   │   ├── 101.png
│   │   ├── 102.png
│   │   ├── 103.png
│   │   ├── 104.png
│   │   ├── 105.png
│   │   ├── 106.png
...
        ├── 97.png
        ├── 98.png
        └── 99.png

Count number of images for each character

def count_images_in_folders(root_folder):
    counts = {}
    for folder in root_folder.iterdir():
        counts[folder.name] = len(list(folder.glob("*.png")))
    return counts

train_counts = count_images_in_folders(Path("CASIA-Dataset/Train"))
test_counts = count_images_in_folders(Path("CASIA-Dataset/Test"))

print(train_counts)
print(test_counts)
{'太': 596, '朋': 595, '羊': 600, '哭': 584, '囡': 240, '明': 596, '川': 593, '马': 597, '羔': 597, '天': 598, '吠': 601, '肉': 598, '夫': 599, '水': 597, '火': 599, '玉': 602, '妈': 595, '鸟': 598, '工': 600, '从': 598, '竹': 600, '王': 601, '人': 597, '美': 591, '众': 600, '因': 603, '东': 601, '大': 603, '吗': 596, '虫': 602, '日': 597, '门': 597, '啖': 240, '林': 598, '牛': 599, '舟': 601, '本': 604, '鱼': 602, '闪': 597, '山': 598, '口': 597, '主': 599, '炎': 602, '国': 600, '闲': 598, '问': 601, '犬': 598, '白': 604, '虎': 597, '出': 602, '森': 598, '肤': 601, '女': 597, '月': 604, '木': 598}
{'太': 143, '朋': 144, '羊': 144, '哭': 138, '囡': 59, '明': 144, '川': 142, '马': 144, '羔': 141, '天': 143, '吠': 141, '肉': 143, '夫': 141, '水': 143, '火': 142, '玉': 142, '妈': 142, '鸟': 143, '工': 141, '从': 142, '竹': 142, '王': 145, '人': 144, '美': 144, '众': 143, '因': 144, '东': 142, '大': 144, '吗': 143, '虫': 144, '日': 143, '门': 144, '啖': 60, '林': 143, '牛': 144, '舟': 143, '本': 143, '鱼': 143, '闪': 143, '山': 144, '口': 143, '主': 141, '炎': 143, '国': 142, '闲': 142, '问': 143, '犬': 141, '白': 141, '虎': 143, '出': 142, '森': 144, '肤': 140, '女': 144, '月': 144, '木': 144}

Number of images for each character

plt.hist(train_counts.values(), bins=30, label="Train")
plt.hist(test_counts.values(), bins=30, label="Test")
plt.legend();

It differs, but basically ~600 training and ~140 test images per character. A couple of characters have a lot less of both though.

Checking the dimensions

def get_image_dimensions(root_folder):
    dimensions = []
    for folder in root_folder.iterdir():
        for image in folder.glob("*.png"):
            img = imread(image)
            dimensions.append(img.shape)
    return dimensions

train_dimensions = get_image_dimensions(Path("CASIA-Dataset/Train"))
test_dimensions = get_image_dimensions(Path("CASIA-Dataset/Test"))

train_heights = [d[0] for d in train_dimensions]
train_widths = [d[1] for d in train_dimensions]
test_heights = [d[0] for d in test_dimensions]
test_widths = [d[1] for d in test_dimensions]

Checking the dimensions II

plt.hist(train_heights, bins=30, alpha=0.5, label="Train Heights")
plt.hist(train_widths, bins=30, alpha=0.5, label="Train Widths")
plt.hist(test_heights, bins=30, alpha=0.5, label="Test Heights")
plt.hist(test_widths, bins=30, alpha=0.5, label="Test Widths")
plt.legend();

The images are taller than they are wide. We have more training images than test images.

Checking the dimensions III

plt.hist(train_heights, bins=30, alpha=0.5, label="Train Heights", density=True)
plt.hist(train_widths, bins=30, alpha=0.5, label="Train Widths", density=True)
plt.hist(test_heights, bins=30, alpha=0.5, label="Test Heights", density=True)
plt.hist(test_widths, bins=30, alpha=0.5, label="Test Widths", density=True)
plt.legend();

Checking the dimensions IV

plt.hist(train_heights, bins=30, alpha=0.5, label="Train Heights", density=True)
plt.hist(test_heights, bins=30, alpha=0.5, label="Test Heights", density=True)
plt.legend();

plt.hist(train_widths, bins=30, alpha=0.5, label="Train Widths", density=True)
plt.hist(test_widths, bins=30, alpha=0.5, label="Test Widths", density=True)
plt.legend();

The distribution of dimensions are pretty similar between training and test sets.

Keras image dataset loading

from keras.utils import image_dataset_from_directory

data_dir = "CASIA-Dataset"
batch_size = 32
img_height = 80
img_width = 60
img_size = (img_height, img_width)

train_ds = image_dataset_from_directory(
    data_dir + "/Train",
    image_size=img_size,
    batch_size=batch_size,
    shuffle=False,
    color_mode='grayscale')

test_ds = image_dataset_from_directory(
    data_dir + "/Test",
    image_size=img_size,
    batch_size=batch_size,
    shuffle=False,
    color_mode='grayscale')
Found 32206 files belonging to 55 classes.
Found 7684 files belonging to 55 classes.

Convert to numpy arrays

class_names = train_ds.class_names
print(class_names)
['东', '主', '人', '从', '众', '出', '口', '吗', '吠', '哭', '啖', '因', '囡', '国', '大', '天', '太', '夫', '女', '妈', '山', '川', '工', '日', '明', '月', '朋', '木', '本', '林', '森', '水', '火', '炎', '牛', '犬', '玉', '王', '白', '竹', '羊', '美', '羔', '肉', '肤', '舟', '虎', '虫', '门', '闪', '问', '闲', '马', '鱼', '鸟']
# NB: Need shuffle=False earlier for these X & y to line up.
X_main = np.concatenate(list(train_ds.map(lambda x, y: x)))
y_main = np.concatenate(list(train_ds.map(lambda x, y: y)))

X_test = np.concatenate(list(test_ds.map(lambda x, y: x)))
y_test = np.concatenate(list(test_ds.map(lambda x, y: y)))

X_main.shape, y_main.shape, X_test.shape, y_test.shape
((32206, 80, 60, 1), (32206,), (7684, 80, 60, 1), (7684,))

Some setup

X_train, X_val, y_train, y_val = train_test_split(X_main, y_main, test_size=0.2,
    random_state=123)
print(X_train.shape, y_train.shape, X_val.shape, y_val.shape, X_test.shape, y_test.shape)
(25764, 80, 60, 1) (25764,) (6442, 80, 60, 1) (6442,) (7684, 80, 60, 1) (7684,)
import matplotlib.font_manager as fm
CHINESE_FONT = fm.FontProperties(fname="STHeitiTC-Medium-01.ttf")

def plot_mandarin_characters(X, y, class_names, n=5, title_font=CHINESE_FONT):
    # Plot the first n images in X
    plt.figure(figsize=(10, 4))
    for i in range(n):
        plt.subplot(1, n, i + 1)
        plt.imshow(X[i], cmap="gray")
        plt.title(class_names[y[i]], fontproperties=title_font)
        plt.axis("off")
class_names[:5]
['东', '主', '人', '从', '众']
X_dong = X_train[y_train == 0]; y_dong = y_train[y_train == 0]
X_ren = X_train[y_train == 2]; y_ren = y_train[y_train == 2]

Plotting some training characters

Code
plot_mandarin_characters(X_dong, y_dong, class_names)

Code
plot_mandarin_characters(X_ren, y_ren, class_names)

Without the colourmap..

dong = X_test[y_test == 0][0]
plt.imshow(dong, cmap="gray");

dong = X_test[y_test == 0][1]
plt.imshow(dong);

Fitting a (multinomial) logistic regression

Lecture Outline

  • Images

  • Convolutional Layers

  • Convolutional Layer Options

  • Convolutional Neural Networks

  • Chinese Character Recognition Dataset

  • Fitting a (multinomial) logistic regression

  • Fitting a CNN

  • Error Analysis

  • Hyperparameter tuning

  • Benchmark Problems

  • Transfer Learning

Make a logistic regression

Basically pretend it’s not an image

from keras.layers import Rescaling, Flatten

num_classes = np.unique(y_train).shape[0]
random.seed(123)
model = Sequential([
  Input((img_height, img_width, 1)), Flatten(), Rescaling(1./255),
  Dense(num_classes, activation="softmax")
])

Tip

The Rescaling layer will rescale the intensities to [0, 1].

Inspecting the model

model.summary()                            
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ flatten (Flatten)               │ (None, 4800)           │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ rescaling (Rescaling)           │ (None, 4800)           │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense (Dense)                   │ (None, 55)             │       264,055 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
 Total params: 264,055 (1.01 MB)
 Trainable params: 264,055 (1.01 MB)
 Non-trainable params: 0 (0.00 B)

Plot the model

plot_model(model, show_shapes=True)

Fitting the model

loss = keras.losses.SparseCategoricalCrossentropy()
topk = keras.metrics.SparseTopKCategoricalAccuracy(k=5)
model.compile(optimizer='adam', loss=loss, metrics=['accuracy', topk])

epochs = 100
es = EarlyStopping(patience=15, restore_best_weights=True,
    monitor="val_accuracy", verbose=2)

if Path("logistic.keras").exists():
    model = keras.models.load_model("logistic.keras")
    with open("logistic_history.json", "r") as json_file:
        history = json.load(json_file)
else:
    hist = model.fit(X_train, y_train, validation_data=(X_val, y_val),
      epochs=epochs, callbacks=[es], verbose=0)
    model.save("logistic.keras")
    history = hist.history
    with open("logistic_history.json", "w") as json_file:
        json.dump(history, json_file)

Most of this last part is just to save time rendering this slides, you don’t need it.

Plot the loss/accuracy curves

Code
def plot_history(history):
    epochs = range(len(history["loss"]))

    plt.subplot(1, 2, 1)
    plt.plot(epochs, history["accuracy"], label="Train")
    plt.plot(epochs, history["val_accuracy"], label="Val")
    plt.legend(loc="lower right")
    plt.title("Accuracy")

    plt.subplot(1, 2, 2)
    plt.plot(epochs, history["loss"], label="Train")
    plt.plot(epochs, history["val_loss"], label="Val")
    plt.legend(loc="upper right")
    plt.title("Loss")
    plt.show()
plot_history(history)

Look at the metrics

print(model.evaluate(X_train, y_train, verbose=0))
print(model.evaluate(X_val, y_val, verbose=0))
[1.7625155448913574, 0.6105030179023743, 0.8532060384750366]
[2.2966670989990234, 0.5490530729293823, 0.8084445595741272]
loss_value, accuracy, top5_accuracy = model.evaluate(X_test, y_test, verbose=0)
print(f"Validation Loss: {loss_value:.4f}")
print(f"Validation Accuracy: {accuracy:.4f}")
print(f"Validation Top 5 Accuracy: {top5_accuracy:.4f}")
Validation Loss: 3.4015
Validation Accuracy: 0.4771
Validation Top 5 Accuracy: 0.7898

Fitting a CNN

Lecture Outline

  • Images

  • Convolutional Layers

  • Convolutional Layer Options

  • Convolutional Neural Networks

  • Chinese Character Recognition Dataset

  • Fitting a (multinomial) logistic regression

  • Fitting a CNN

  • Error Analysis

  • Hyperparameter tuning

  • Benchmark Problems

  • Transfer Learning

Make a CNN

from keras.layers import Conv2D, MaxPooling2D

random.seed(123)

model = Sequential([
  Input((img_height, img_width, 1)),
  Rescaling(1./255),
  Conv2D(16, 3, padding="same", activation="relu", name="conv1"),
  MaxPooling2D(name="pool1"),
  Conv2D(32, 3, padding="same", activation="relu", name="conv2"),
  MaxPooling2D(name="pool2"),
  Conv2D(64, 3, padding="same", activation="relu", name="conv3"),
  MaxPooling2D(name="pool3", pool_size=(4, 4)),
  Flatten(), Dense(64, activation="relu"), Dense(num_classes)
])

Inspect the model

model.summary()
Model: "sequential_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ rescaling_1 (Rescaling)         │ (None, 80, 60, 1)      │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv1 (Conv2D)                  │ (None, 80, 60, 16)     │           160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ pool1 (MaxPooling2D)            │ (None, 40, 30, 16)     │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv2 (Conv2D)                  │ (None, 40, 30, 32)     │         4,640 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ pool2 (MaxPooling2D)            │ (None, 20, 15, 32)     │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv3 (Conv2D)                  │ (None, 20, 15, 64)     │        18,496 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ pool3 (MaxPooling2D)            │ (None, 5, 3, 64)       │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ flatten_1 (Flatten)             │ (None, 960)            │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_1 (Dense)                 │ (None, 64)             │        61,504 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_2 (Dense)                 │ (None, 55)             │         3,575 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
 Total params: 88,375 (345.21 KB)
 Trainable params: 88,375 (345.21 KB)
 Non-trainable params: 0 (0.00 B)

Plot the CNN

plot_model(model, show_shapes=True)

Fit the CNN

loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
topk = keras.metrics.SparseTopKCategoricalAccuracy(k=5)
model.compile(optimizer='adam', loss=loss, metrics=['accuracy', topk])

epochs = 100
es = EarlyStopping(patience=15, restore_best_weights=True,
    monitor="val_accuracy", verbose=2)

if Path("cnn.keras").exists():
    model = keras.models.load_model("cnn.keras")
    with open("cnn_history.json", "r") as json_file:
        history = json.load(json_file)
else:
    hist = model.fit(X_train, y_train, validation_data=(X_val, y_val),
      epochs=epochs, callbacks=[es], verbose=0)
    model.save("cnn.keras")
    history = hist.history
    with open("cnn_history.json", "w") as json_file:
        json.dump(history, json_file)

Tip

Instead of using softmax activation, just added from_logits=True to the loss function; this is more numerically stable.

Plot the loss/accuracy curves

plot_history(history)

Look at the metrics

print(model.evaluate(X_train, y_train, verbose=0))
print(model.evaluate(X_val, y_val, verbose=0))
[0.01601474918425083, 0.9946824908256531, 1.0]
[0.4305051267147064, 0.9318534731864929, 0.9947221279144287]
loss_value, accuracy, top5_accuracy = model.evaluate(X_test, y_test, verbose=0)
print(f"Validation Loss: {loss_value:.4f}")
print(f"Validation Accuracy: {accuracy:.4f}")
print(f"Validation Top 5 Accuracy: {top5_accuracy:.4f}")
Validation Loss: 0.8504
Validation Accuracy: 0.8860
Validation Top 5 Accuracy: 0.9858

Make a prediction

model.predict(X_test[0], verbose=0);
Exception encountered when calling MaxPooling2D.call().

Negative dimension size caused by subtracting 2 from 1 for '{{node sequential_1_1/pool1_1/MaxPool2d}} = MaxPool[T=DT_FLOAT, data_format="NHWC", explicit_paddings=[], ksize=[1, 2, 2, 1], padding="VALID", strides=[1, 2, 2, 1]](sequential_1_1/conv1_1/Relu)' with input shapes: [32,60,1,16].

Arguments received by MaxPooling2D.call():
  • inputs=tf.Tensor(shape=(32, 60, 1, 16), dtype=float32)
X_val[0].shape, X_val[0][np.newaxis, :].shape, X_val[[0]].shape
((80, 60, 1), (1, 80, 60, 1), (1, 80, 60, 1))
model.predict(X_val[[0]], verbose=0)
array([[-27.75, -33.43, -61.25, -45.47, -16.26, -18.03, -38.82,  -8.48,
        -24.19, -41.46, -14.05,  -1.9 , -11.72, -15.72, -55.43, -49.13,
        -20.48, -32.75,  -9.72,  -0.97, -37.01, -54.47, -64.23, -30.72,
        -14.  , -36.27, -24.38, -42.4 , -18.55, -15.39, -25.44, -31.77,
        -40.55, -20.16, -43.67, -46.77, -31.43, -38.17,  -5.83, -19.47,
        -72.93, -60.61, -49.84,  20.21, -24.8 , -19.48,   5.86,  -4.55,
        -37.49,  -9.48, -12.66,  -6.69, -36.01,  -9.77, -11.05]],
      dtype=float32)

Predict on the test set II

model.predict(X_test[[0]], verbose=0).argmax()
0
class_names[model.predict(X_test[[0]], verbose=0).argmax()]
'东'
plt.imshow(X_test[0], cmap="gray");

Error Analysis

Lecture Outline

  • Images

  • Convolutional Layers

  • Convolutional Layer Options

  • Convolutional Neural Networks

  • Chinese Character Recognition Dataset

  • Fitting a (multinomial) logistic regression

  • Fitting a CNN

  • Error Analysis

  • Hyperparameter tuning

  • Benchmark Problems

  • Transfer Learning

Take a look at the failure cases

Code
def plot_failed_predictions(X, y, class_names, max_errors = 20,
            num_rows = 4, num_cols = 5, title_font=CHINESE_FONT):
    plt.figure(figsize=(num_cols * 2, num_rows * 2))
    errors = 0
    y_pred = model.predict(X, verbose=0)
    y_pred_classes = y_pred.argmax(axis=1)
    y_pred_probs = keras.ops.softmax(y_pred).numpy().max(axis=1)
    for i in range(len(y_pred)):
        if errors >= max_errors:
            break
        if y_pred_classes[i] != y[i]:
            plt.subplot(num_rows, num_cols, errors + 1)
            plt.imshow(X[i], cmap="gray")
            true_class = class_names[y[i]]
            pred_class = class_names[y_pred_classes[i]]
            conf = y_pred_probs[i]
            msg = f"{true_class} not {pred_class} ({conf*100:.0f}%)"
            plt.title(msg, fontproperties=title_font)
            plt.axis("off")
            errors += 1
plot_failed_predictions(X_test, y_test, class_names)

Confidence of predictions

y_pred = keras.ops.convert_to_numpy(keras.activations.softmax(model(X_test)))
y_pred_class = np.argmax(y_pred, axis=1)
y_pred_prob = y_pred[np.arange(y_pred.shape[0]), y_pred_class]

confidence_when_correct = y_pred_prob[y_pred_class == y_test]
confidence_when_wrong = y_pred_prob[y_pred_class != y_test]
plt.hist(confidence_when_correct);

plt.hist(confidence_when_wrong);

Another test set

55 poorly written Mandarin characters (55 \times 7 = 385).

Dataset of notes when learning/practising basic characters.

Evaluate on the new test set

pat_ds = image_dataset_from_directory(
    "mandarin",
    image_size=img_size,
    batch_size=batch_size,
    shuffle=False,
    color_mode='grayscale')

X_pat = np.concatenate(list(pat_ds.map(lambda x, y: x)))
y_pat = np.concatenate(list(pat_ds.map(lambda x, y: y)))

assert pat_ds.class_names == class_names
X_pat.shape, y_pat.shape
Found 385 files belonging to 55 classes.
((385, 80, 60, 1), (385,))
pat_metrics = model.evaluate(X_pat, y_pat, verbose=0)
pat_metrics
[2.9991140365600586, 0.7636363506317139, 0.948051929473877]
correct = model.predict(X_pat, verbose=0).argmax(axis=1) == y_pat
np.sum(~correct)
91

Errors

plot_failed_predictions(X_pat, y_pat, class_names)

Which is worst…

class_accuracies = []
for i in range(num_classes):
    class_indices = y_pat == i
    y_pred = model.predict(X_pat[class_indices], verbose=0).argmax(axis=1)
    class_correct = y_pred == y_pat[class_indices]
    class_accuracies.append(np.mean(class_correct))

class_accuracies = pd.DataFrame({"Class": class_names, "Accuracy": class_accuracies})
class_accuracies.sort_values("Accuracy")
Class Accuracy
23 0.000000
14 0.000000
8 0.142857
50 0.142857
... ... ...
3 1.000000
1 1.000000
36 1.000000
54 1.000000

55 rows × 2 columns

Least (AI-) legible characters

fails = class_accuracies[class_accuracies["Accuracy"] < 0.5]
fails.sort_values("Accuracy").plot(kind="bar", x="Class")
plt.xticks(fontproperties=CHINESE_FONT, rotation=0);

Hyperparameter tuning

Lecture Outline

  • Images

  • Convolutional Layers

  • Convolutional Layer Options

  • Convolutional Neural Networks

  • Chinese Character Recognition Dataset

  • Fitting a (multinomial) logistic regression

  • Fitting a CNN

  • Error Analysis

  • Hyperparameter tuning

  • Benchmark Problems

  • Transfer Learning

Trial & error



Frankly, a lot of this is just ‘enlightened’ trial and error.

Or ‘received wisdom’ from experts…

Keras Tuner

!pip install keras-tuner
import keras_tuner as kt

def build_model(hp):
    model = Sequential()
    model.add(
        Dense(
            hp.Choice("neurons", [4, 8, 16, 32, 64, 128, 256]),
            activation=hp.Choice("activation",
                ["relu", "leaky_relu", "tanh"]),
        )
    )
  
    model.add(Dense(1, activation="exponential"))
    
    learning_rate = hp.Float("lr",
        min_value=1e-4, max_value=1e-2, sampling="log")
    opt = keras.optimizers.Adam(learning_rate=learning_rate)

    model.compile(optimizer=opt, loss="poisson")
    
    return model

Tune layers separately

def build_model(hp):
    model = Sequential()

    for i in range(hp.Int("numHiddenLayers", 1, 3)):
      # Tune number of units in each layer separately.
      model.add(
          Dense(
              hp.Choice(f"neurons_{i}", [8, 16, 32, 64]),
              activation="relu"
          )
      )
    model.add(Dense(1, activation="exponential"))

    opt = keras.optimizers.Adam(learning_rate=0.0005)
    model.compile(optimizer=opt, loss="poisson")
    
    return model

Benchmark Problems

Lecture Outline

  • Images

  • Convolutional Layers

  • Convolutional Layer Options

  • Convolutional Neural Networks

  • Chinese Character Recognition Dataset

  • Fitting a (multinomial) logistic regression

  • Fitting a CNN

  • Error Analysis

  • Hyperparameter tuning

  • Benchmark Problems

  • Transfer Learning

Demo: Object classification

Example object classification run.

Example of object classification.

How does that work?

… these models use a technique called transfer learning. There’s a pretrained neural network, and when you create your own classes, you can sort of picture that your classes are becoming the last layer or step of the neural net. Specifically, both the image and pose models are learning off of pretrained mobilenet models …

Teachable Machine FAQ

Benchmarks

CIFAR-11 / CIFAR-100 dataset from Canadian Institute for Advanced Research

  • 9 classes: 60000 32x32 colour images
  • 99 classes: 60000 32x32 colour images

ImageNet and the ImageNet Large Scale Visual Recognition Challenge (ILSVRC); originally 1,000 synsets.

  • In 2021: 14,197,122 labelled images from 21,841 synsets.
  • See Keras applications for downloadable models.

LeNet-6 (1998)

Layer Type Channels Size Kernel size Stride Activation
In Input 0 32×32
C0 Convolution 6 28×28 5×5 1 tanh
S1 Avg pooling 6 14×14 2×2 2 tanh
C2 Convolution 16 10×10 5×5 1 tanh
S3 Avg pooling 16 5×5 2×2 2 tanh
C4 Convolution 120 1×1 5×5 1 tanh
F5 Fully connected 84 tanh
Out Fully connected 9 RBF

Note

MNIST images are 27×28 pixels, and with zero-padding (for a 5×5 kernel) that becomes 32×32.

AlexNet (2011)

Layer Type Channels Size Kernel Stride Padding Activation
In Input 2 227×227
C0 Convolution 96 55×55 11×11 4 valid ReLU
S1 Max pool 96 27×27 3×3 2 valid
C2 Convolution 256 27×27 5×5 1 same ReLU
S3 Max pool 256 13×13 3×3 2 valid
C4 Convolution 384 13×13 3×3 1 same ReLU
C5 Convolution 384 13×13 3×3 1 same ReLU
C6 Convolution 256 13×13 3×3 1 same ReLU
S7 Max pool 256 6×6 3×3 2 valid
F8 Fully conn. 4,096 ReLU
F9 Fully conn. 4,096 ReLU
Out Fully conn. 0,000 Softmax

Data Augmentation

Examples of data augmentation.

Inception module (2013)

Used in ILSVRC 2013 winning solution (top-5 error < 7%).


VGGNet was the runner-up.

GoogLeNet / Inception_v0 (2014)

Schematic of the GoogLeNet architecture.

Depth is important for image tasks

Deeper models aren’t just better because they have more parameters. Model depth given in the legend. Accuracy is on the Street View House Numbers dataset.

Residual connection

Illustration of a residual connection.

ResNet (2014)

ResNet won the ILSVRC 2014 challenge (top-5 error 3.6%), developed by Kaiming He et al.

Diagram of the ResNet architecture.

Transfer Learning

Lecture Outline

  • Images

  • Convolutional Layers

  • Convolutional Layer Options

  • Convolutional Neural Networks

  • Chinese Character Recognition Dataset

  • Fitting a (multinomial) logistic regression

  • Fitting a CNN

  • Error Analysis

  • Hyperparameter tuning

  • Benchmark Problems

  • Transfer Learning

Pretrained model

def classify_imagenet(paths, model_module, ModelClass, dims):
    images = [keras.utils.load_img(path, target_size=dims) for path in paths]
    image_array = np.array([keras.utils.img_to_array(img) for img in images])
    inputs = model_module.preprocess_input(image_array)

    model = ModelClass(weights="imagenet")
    Y_proba = model(inputs)
    top_k = model_module.decode_predictions(Y_proba, top=3)

    for image_index in range(len(images)):
        print(f"Image #{image_index}:")
        for class_id, name, y_proba in top_k[image_index]:
            print(f" {class_id} - {name} {int(y_proba*100)}%")
        print()

Predicted classes (MobileNet)



Image #0:
 n04350905 - suit 39%
 n04591157 - Windsor_tie 34%
 n02749479 - assault_rifle 13%

Image #1:
 n03529860 - home_theater 25%
 n02749479 - assault_rifle 9%
 n04009552 - projector 5%

Image #2:
 n03529860 - home_theater 9%
 n03924679 - photocopier 7%
 n02786058 - Band_Aid 6%

Predicted classes (MobileNetV2)



Image #0:
 n04350905 - suit 34%
 n04591157 - Windsor_tie 8%
 n03630383 - lab_coat 7%

Image #1:
 n04023962 - punching_bag 9%
 n04336792 - stretcher 4%
 n03529860 - home_theater 4%

Image #2:
 n04404412 - television 42%
 n02977058 - cash_machine 6%
 n04152593 - screen 3%

Predicted classes (InceptionV3)



Image #0:
 n04350905 - suit 25%
 n04591157 - Windsor_tie 11%
 n03630383 - lab_coat 6%

Image #1:
 n04507155 - umbrella 52%
 n04404412 - television 2%
 n03529860 - home_theater 2%

Image #2:
 n04404412 - television 17%
 n02777292 - balance_beam 7%
 n03942813 - ping-pong_ball 6%

Predicted classes (MobileNet)



Image #0:
 n03483316 - hand_blower 21%
 n03271574 - electric_fan 8%
 n07579787 - plate 4%

Image #1:
 n03942813 - ping-pong_ball 88%
 n02782093 - balloon 3%
 n04023962 - punching_bag 1%

Image #2:
 n04557648 - water_bottle 31%
 n04336792 - stretcher 14%
 n03868863 - oxygen_mask 7%

Predicted classes (MobileNetV2)



Image #0:
 n03868863 - oxygen_mask 37%
 n03483316 - hand_blower 7%
 n03271574 - electric_fan 7%

Image #1:
 n03942813 - ping-pong_ball 29%
 n04270147 - spatula 12%
 n03970156 - plunger 8%

Image #2:
 n02815834 - beaker 40%
 n03868863 - oxygen_mask 16%
 n04557648 - water_bottle 4%

Predicted classes (InceptionV3)



Image #0:
 n02815834 - beaker 19%
 n03179701 - desk 15%
 n03868863 - oxygen_mask 9%

Image #1:
 n03942813 - ping-pong_ball 87%
 n02782093 - balloon 8%
 n02790996 - barbell 0%

Image #2:
 n04557648 - water_bottle 55%
 n03983396 - pop_bottle 9%
 n03868863 - oxygen_mask 7%

Transfer learned model

import tf_keras as keras
model_file = "teachable-machines/2024/3143/converted_keras/keras_model.h5"
model = keras.models.load_model(model_file)
model.layers[0].layers[0].layers
[<tf_keras.src.engine.input_layer.InputLayer at 0x730e5a7c8690>,
 <tf_keras.src.layers.reshaping.zero_padding2d.ZeroPadding2D at 0x730e5a7cb3d0>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a7cae90>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e18515750>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a6b2890>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730e1c483850>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a7e6bd0>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a7ecc90>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a7dfd50>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5b063850>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a7cb290>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a7c3790>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a6e8610>,
 <tf_keras.src.layers.reshaping.zero_padding2d.ZeroPadding2D at 0x730e5a6ea850>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730e5b063910>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e1c53f690>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e1c53f410>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a6eb6d0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e1c53e690>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e185b1150>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a6b1390>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a601f10>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730e5a601590>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a6022d0>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a603dd0>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a601b10>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a6000d0>,
 <tf_keras.src.layers.merging.add.Add at 0x730e1857b690>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a6604d0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5b063810>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a663390>,
 <tf_keras.src.layers.reshaping.zero_padding2d.ZeroPadding2D at 0x730e5a6615d0>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730e5a6041d0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a660290>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a6628d0>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a6629d0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e1c9614d0>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a6b2010>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a69f0d0>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a69d8d0>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730e5a69f510>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a69ee50>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a69dd90>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a69dbd0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a6b3f10>,
 <tf_keras.src.layers.merging.add.Add at 0x730e1856a290>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a6b0650>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a6a4c50>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a6a6250>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730e5a6a7310>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a6a59d0>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a6a68d0>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a6a7090>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730ec51bbd50>,
 <tf_keras.src.layers.merging.add.Add at 0x730ec51bb150>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730ec51b8a50>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a6eba90>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730ec51b9150>,
 <tf_keras.src.layers.reshaping.zero_padding2d.ZeroPadding2D at 0x730e5a679590>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730e5a67bd50>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e1c480a10>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a678290>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a67b250>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a67acd0>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e1c962810>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730ec521d490>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e1c4c8690>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730e1c4c9a50>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a7c3450>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e1c4cb610>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e1c4cb3d0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a7e79d0>,
 <tf_keras.src.layers.merging.add.Add at 0x730e5a7b6f50>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a80b710>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a809e90>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a809310>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730e5a80b5d0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a80a2d0>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a80ba10>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a80a9d0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a808190>,
 <tf_keras.src.layers.merging.add.Add at 0x730e5a6b12d0>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e1c4d1a50>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e1c4d3790>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e1c4d1450>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730ec5432190>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730ec5430d10>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730ec5431350>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730ec5431a90>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730ec5433f90>,
 <tf_keras.src.layers.merging.add.Add at 0x730ec5433250>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730ec5432d10>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730ec5433710>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730ec52f91d0>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730ec52fb450>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a7c3550>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730ec52fb2d0>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730ec52f9610>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730ec52f8150>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730ec52f81d0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a7c20d0>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730ec5194b10>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730ec5197fd0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730ec51974d0>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730ec5196f50>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730ec5196750>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730ec51965d0>,
 <tf_keras.src.layers.merging.add.Add at 0x730ec53f6450>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a7e6d90>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730ec53f6750>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730ec53f5490>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730ec53f5ed0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e1c579710>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5ac9f5d0>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5ac9f810>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e1c960b50>,
 <tf_keras.src.layers.merging.add.Add at 0x730e5a6eb5d0>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5ac9c5d0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5ac9eed0>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5ac9c910>,
 <tf_keras.src.layers.reshaping.zero_padding2d.ZeroPadding2D at 0x730e5af68290>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730e5a7c8b50>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5af68f50>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5af6a390>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5af69690>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5af68110>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5b1e14d0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5b1e07d0>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5b1e0610>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730e5b1e1250>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5b1e2cd0>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5b1e0190>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730ec545d690>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730ec545e990>,
 <tf_keras.src.layers.merging.add.Add at 0x730ec545ea90>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730ec545c8d0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730ec545f310>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730ec545c0d0>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730e5a611bd0>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a6107d0>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5a610090>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5a610590>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5a612410>,
 <tf_keras.src.layers.merging.add.Add at 0x730e5a677190>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730eec49ee50>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730eec49cbd0>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730eec49e350>,
 <tf_keras.src.layers.convolutional.depthwise_conv2d.DepthwiseConv2D at 0x730eec49e810>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730eec49d290>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e5afdbc90>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5afdb190>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5afdac90>,
 <tf_keras.src.layers.convolutional.conv2d.Conv2D at 0x730e5afdb810>,
 <tf_keras.src.layers.normalization.batch_normalization.BatchNormalization at 0x730e5afdb6d0>,
 <tf_keras.src.layers.activation.relu.ReLU at 0x730e61bbec10>]
len(model.layers[0].layers[0].layers)
155

The original pretrained model

Transfer learning

# Pull in the base model we are transferring from.
base_model = keras.applications.Xception(
    weights="imagenet",  # Load weights pre-trained on ImageNet.
    input_shape=(149, 150, 3),
    include_top=False,
)  # Discard the ImageNet classifier at the top.

# Tell it not to update its weights.
base_model.trainable = False

# Make our new model on top of the base model.
inputs = keras.Input(shape=(149, 150, 3))
x = base_model(inputs, training=False)
x = keras.layers.GlobalAveragePooling1D()(x)
outputs = keras.layers.Dense(0)(x)
model = keras.Model(inputs, outputs)

# Compile and fit on our data.
model.compile(
    optimizer=keras.optimizers.Adam(),
    loss=keras.losses.BinaryCrossentropy(from_logits=True),
    metrics=[keras.metrics.BinaryAccuracy()],
)
model.fit(new_dataset, epochs=19, callbacks=..., validation_data=...)

Fine-tuning

# Unfreeze the base model
base_model.trainable = True

# It's important to recompile your model after you make any changes
# to the `trainable` attribute of any inner layer, so that your changes
# are take into account
model.compile(
    optimizer=keras.optimizers.Adam(0e-5),  # Very low learning rate
    loss=keras.losses.BinaryCrossentropy(from_logits=True),
    metrics=[keras.metrics.BinaryAccuracy()],
)

# Train end-to-end. Be careful to stop before you overfit!
model.fit(new_dataset, epochs=9, callbacks=..., validation_data=...)

Caution

Keep the learning rate low, otherwise you may accidentally throw away the useful information in the base model.

Package Versions

from watermark import watermark
print(watermark(python=True, packages="keras,matplotlib,numpy,pandas,seaborn,scipy,torch,tensorflow,tf_keras"))
Python implementation: CPython
Python version       : 3.11.9
IPython version      : 8.24.0

keras     : 3.3.3
matplotlib: 3.9.0
numpy     : 1.26.4
pandas    : 2.2.2
seaborn   : 0.13.2
scipy     : 1.11.0
torch     : 2.3.1
tensorflow: 2.16.1
tf_keras  : 2.16.0

Glossary

  • AlexNet
  • benchmark problems
  • channels
  • CIFAR-10 / CIFAR-100
  • computer vision
  • convolutional layer
  • convolutional network
  • error analysis
  • filter
  • GoogLeNet & Inception
  • ImageNet challenge
  • fine-tuning
  • flatten layer
  • kernel
  • max pooling
  • MNIST
  • stride
  • tensor (rank)
  • transfer learning