Interpretability

ACTL3143 & ACTL5111 Deep Learning for Actuaries

Patrick Laub

Interpretability

Lecture Outline

  • Interpretability

  • Inherent Interpretability

  • Post-hoc Interpretability

  • Illustrative Example

  • Illustrative Example (Fixed)

Interpretability

Interpretability Definition

Interpretability refers to the ease with which one can understand and comprehend the model’s algorithm and predictions.

Interpretability of black-box models can be crucial to ascertaining trust.

Interpretability is about transparency, about understanding exactly why and how the model is generating predictions, and therefore, it is important to observe the inner mechanics of the algorithm considered. This leads to interpreting the model’s parameters and features used to determine the given output. Explainability is about explaining the behavior of the model in human terms.

Husky vs. Wolf

A well-known anecdote in the explainability literature.

Aspects of Interpretability

Inherent Interpretability

The model is interpretable by design.

Post-hoc Interpretability

The model is not interpretable by design, but we can use other methods to explain the model.


Global Interpretability

The ability to understand how the model works.

Local Interpretability

The ability to interpret/understand each prediction.

Inherent Interpretability

Lecture Outline

  • Interpretability

  • Inherent Interpretability

  • Post-hoc Interpretability

  • Illustrative Example

  • Illustrative Example (Fixed)

Trees are interpretable!

Train prices

Trees are interpretable?

Full train pricing

Linear models & LocalGLMNet

A GLM has the form

\hat{y} = g^{-1}\bigl( \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p \bigr)

where \beta_0, \dots, \beta_p are the model parameters.

Global & local interpretations are easy to obtain.


LocalGLMNet extends this to a neural network.

\hat{y_i} = g^{-1}\bigl( \beta_0(\boldsymbol{x}_i) + \beta_1(\boldsymbol{x}_i) x_{i1} + \dots + \beta_p(\boldsymbol{x}_i) x_{ip} \bigr)

A GLM with local parameters \beta_0(\boldsymbol{x}_i), \dots, \beta_p(\boldsymbol{x}_i) for each observation \boldsymbol{x}_i. The local parameters are the output of a neural network.

Post-hoc Interpretability

Lecture Outline

  • Interpretability

  • Inherent Interpretability

  • Post-hoc Interpretability

  • Illustrative Example

  • Illustrative Example (Fixed)

Permutation importance

  • Inputs: fitted model m, tabular dataset D.

  • Compute the reference score s of the model m on data D (for instance the accuracy for a classifier or the R^2 for a regressor).

  • For each feature j (column of D):

    • For each repetition k in {1, \dots, K}:

      • Randomly shuffle column j of dataset D to generate a corrupted version of the data named \tilde{D}_{k,j}.
      • Compute the score s_{k,j} of model m on corrupted data \tilde{D}_{k,j}.
    • Compute importance i_j for feature f_j defined as:

      i_j = s - \frac{1}{K} \sum_{k=1}^{K} s_{k,j}

Originally proposed by Breiman (2001), Random forests, Machine learning (45), pp. 5-32.

Extended by Fisher et al. (2019), All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously, Journal of Machine Learning Research (20.177), pp. 1-81.

Permutation importance

def permutation_test(model, X, y, num_reps=1, seed=42):
    """
    Run the permutation test for variable importance.
    Returns matrix of shape (X.shape[1], len(model.evaluate(X, y))).
    """
    rnd.seed(seed)
    scores = []    

    for j in range(X.shape[1]):
        original_column = np.copy(X[:, j])
        col_scores = []

        for r in range(num_reps):
            rnd.shuffle(X[:,j])
            col_scores.append(model.evaluate(X, y, verbose=0))

        scores.append(np.mean(col_scores, axis=0))
        X[:,j] = original_column
    
    return np.array(scores)

LIME

Local Interpretable Model-agnostic Explanations employs an interpretable surrogate model to explain locally how the black-box model makes predictions for individual instances.

E.g. a black-box model predicts Bob’s premium as the highest among all policyholders. LIME uses an interpretable model (a linear regression) to explain how Bob’s features influence the black-box model’s prediction.

Globally vs. Locally Faithful

Globally Faithful

The interpretable model’s explanations accurately reflect the behaviour of the black-box model across the entire input space.

Locally Faithful

The interpretable model’s explanations accurately reflect the behaviour of the black-box model for a specific instance.

LIME aims to construct an interpretable model that mimics the black-box model’s behaviour in a locally faithful manner.

LIME Algorithm

Suppose we want to explain the instance \boldsymbol{x}_{\text{Bob}}=(1, 2, 0.5).

  1. Generate perturbed examples of \boldsymbol{x}_{\text{Bob}} and use the trained gamma MDN f to make predictions: \begin{align*} \boldsymbol{x}^{'(1)}_{\text{Bob}} &= (1.1, 1.9, 0.6), \quad f\big(\boldsymbol{x}^{'(1)}_{\text{Bob}}\big)=34000 \\ \boldsymbol{x}^{'(2)}_{\text{Bob}} &= (0.8, 2.1, 0.4), \quad f\big(\boldsymbol{x}^{'(2)}_{\text{Bob}}\big)=31000 \\ &\vdots \quad \quad \quad \quad\quad \quad\quad \quad\quad \quad \quad \vdots \end{align*} We can then construct a dataset of N_{\text{Examples}} perturbed examples: \mathcal{D}_{\text{LIME}} = \big(\big\{\boldsymbol{x}^{'(i)}_{\text{Bob}},f\big(\boldsymbol{x}^{'(i)}_{\text{Bob}}\big)\big\}\big)_{i=0}^{N_{\text{Examples}}}.

LIME Algorithm

  1. Fit an interpretable model g, i.e., a linear regression using \mathcal{D}_{\text{LIME}} and the following loss function: \mathcal{L}_{\text{LIME}}(f,g,\pi_{\boldsymbol{x}_{\text{Bob}}})=\sum_{i=1}^{N_{\text{Examples}}}\pi_{\boldsymbol{x}_{\text{Bob}}}\big(\boldsymbol{x}^{'(i)}_{\text{Bob}}\big)\cdot \bigg(f\big(\boldsymbol{x}^{'(i)}_{\text{Bob}}\big)-g\big(\boldsymbol{x}^{'(i)}_{\text{Bob}}\big)\bigg)^2, where \pi_{\boldsymbol{x}_{\text{Bob}}}\big(\boldsymbol{x}^{'(i)}_{\text{Bob}}\big) represents the distance from the perturbed example \boldsymbol{x}^{'(i)}_{\text{Bob}} to the instance to be explained \boldsymbol{x}_{\text{Bob}}.

“Explaining” to Bob

The bold red cross is the instance being explained. LIME samples instances (grey nodes), gets predictions using f (gamma MDN) and weighs them by the proximity to the instance being explained (represented here by size). The dashed line g is the learned local explanation.

SHAP Values

The SHapley Additive exPlanations (SHAP) value helps to quantify the contribution of each feature to the prediction for a specific instance.

The SHAP value for the jth feature is defined as \begin{align*} \text{SHAP}^{(j)}(\boldsymbol{x}) &= \sum_{U\subset \{1, ..., p\} \backslash \{j\}} \frac{1}{p} \binom{p-1}{|U|}^{-1} \big(\mathbb{E}[Y| \boldsymbol{x}^{(U\cup \{j\})}] - \mathbb{E}[Y|\boldsymbol{x}^{(U)}]\big), \end{align*} where p is the number of features. A positive SHAP value indicates that the variable increases the prediction value.

Grad-CAM

Original image

Grad-CAM

See, e.g., Keras tutorial.

Criticism

Multiple conflicting explanations.

Illustrative Example

Lecture Outline

  • Interpretability

  • Inherent Interpretability

  • Post-hoc Interpretability

  • Illustrative Example

  • Illustrative Example (Fixed)

First attempt at NLP task

Code
df_raw = pd.read_parquet("../Natural-Language-Processing/NHTSA_NMVCCS_extract.parquet.gzip")

df_raw["NUM_VEHICLES"] = df_raw["NUMTOTV"].map(lambda x: str(x) if x <= 2 else "3+")

weather_cols = [f"WEATHER{i}" for i in range(1, 9)]
features = df_raw[["SUMMARY_EN"] + weather_cols]

target_labels = df_raw["NUM_VEHICLES"]
target = LabelEncoder().fit_transform(target_labels)

X_main, X_test, y_main, y_test = train_test_split(features, target, test_size=0.2, random_state=1)
X_train, X_val, y_train, y_val = train_test_split(X_main, y_main, test_size=0.25, random_state=1)
df_raw["SUMMARY_EN"]
0       V1, a 2000 Pontiac Montana minivan, made a lef...
1       The crash occurred in the eastbound lane of a ...
2       This crash occurred just after the noon time h...
                              ...                        
6946    The crash occurred in the eastbound lanes of a...
6947    This single-vehicle crash occurred in a rural ...
6948    This two vehicle daytime collision occurred mi...
Name: SUMMARY_EN, Length: 6949, dtype: object
df_raw["NUM_VEHICLES"].value_counts()\
  .sort_index()
NUM_VEHICLES
1     1822
2     4151
3+     976
Name: count, dtype: int64

Bag of words for the top 1,000 words

Code
def vectorise_dataset(X, vect, txt_col="SUMMARY_EN", dataframe=False):
    X_vects = vect.transform(X[txt_col]).toarray()
    X_other = X.drop(txt_col, axis=1)

    if not dataframe:
        return np.concatenate([X_vects, X_other], axis=1)                           
    else:
        # Add column names and indices to the combined dataframe.
        vocab = list(vect.get_feature_names_out())
        X_vects_df = pd.DataFrame(X_vects, columns=vocab, index=X.index)
        return pd.concat([X_vects_df, X_other], axis=1) 
vect = CountVectorizer(max_features=1_000, stop_words="english")
vect.fit(X_train["SUMMARY_EN"])

X_train_bow = vectorise_dataset(X_train, vect)
X_val_bow = vectorise_dataset(X_val, vect)
X_test_bow = vectorise_dataset(X_test, vect)

vectorise_dataset(X_train, vect, dataframe=True).head()
10 105 113 12 15 150 16 17 18 180 ... yield zone WEATHER1 WEATHER2 WEATHER3 WEATHER4 WEATHER5 WEATHER6 WEATHER7 WEATHER8
2532 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
6209 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
2561 1 0 1 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
6664 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
4214 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0

5 rows × 1008 columns

Trained a basic neural network on that

Code
def build_model(num_features, num_cats):
    random.seed(42)
    
    model = Sequential([
        Input((num_features,)),
        Dense(100, activation="relu"),
        Dense(num_cats, activation="softmax")
    ])
    
    topk = SparseTopKCategoricalAccuracy(k=2, name="topk")
    model.compile("adam", "sparse_categorical_crossentropy",
        metrics=["accuracy", topk])
    
    return model
num_features = X_train_bow.shape[1]
num_cats = df_raw["NUM_VEHICLES"].nunique()
model = build_model(num_features, num_cats)
es = EarlyStopping(patience=1, restore_best_weights=True, monitor="val_accuracy")
model.fit(X_train_bow, y_train, epochs=10,
    callbacks=[es], validation_data=(X_val_bow, y_val), verbose=0)
model.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense (Dense)                   │ (None, 100)            │       100,900 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_1 (Dense)                 │ (None, 3)              │           303 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
 Total params: 303,611 (1.16 MB)
 Trainable params: 101,203 (395.32 KB)
 Non-trainable params: 0 (0.00 B)
 Optimizer params: 202,408 (790.66 KB)
model.evaluate(X_train_bow, y_train, verbose=0)
[0.004478050395846367, 1.0, 1.0]
model.evaluate(X_val_bow, y_val, verbose=0)
[8.163677215576172, 0.9784172773361206, 0.9985611438751221]

Permutation importance algorithm

Taken directly from scikit-learn documentation:

  • Inputs: fitted predictive model m, tabular dataset (training or validation) D.

  • Compute the reference score s of the model m on data D (for instance the accuracy for a classifier or the R^2 for a regressor).

  • For each feature j (column of D):

    • For each repetition k in {1, \dots, K}:

      • Randomly shuffle column j of dataset D to generate a corrupted version of the data named \tilde{D}_{k,j}.
      • Compute the score s_{k,j} of model m on corrupted data \tilde{D}_{k,j}.
    • Compute importance i_j for feature f_j defined as:

      i_j = s - \frac{1}{K} \sum_{k=1}^{K} s_{k,j}

Find important inputs

def permutation_test(model, X, y, num_reps=1, seed=42):
    """
    Run the permutation test for variable importance.
    Returns matrix of shape (X.shape[1], len(model.evaluate(X, y))).
    """
    rnd.seed(seed)
    scores = []    

    for j in range(X.shape[1]):
        original_column = np.copy(X[:, j])
        col_scores = []

        for r in range(num_reps):
            rnd.shuffle(X[:,j])
            col_scores.append(model.evaluate(X, y, verbose=0))

        scores.append(np.mean(col_scores, axis=0))
        X[:,j] = original_column
    
    return np.array(scores)

Run the permutation test

all_perm_scores = permutation_test(model, X_val_bow, y_val)
all_perm_scores
array([[ 8.16,  0.98,  1.  ],
       [ 8.16,  0.98,  1.  ],
       [ 8.16,  0.98,  1.  ],
       ...,
       [ 8.48,  0.98,  1.  ],
       [ 8.47,  0.98,  1.  ],
       [14.59,  0.98,  1.  ]])

Plot the permutated accuracies

perm_scores = all_perm_scores[:,1]
plt.plot(perm_scores)
plt.xlabel("Input index")
plt.ylabel("Accuracy when shuffled");

Find the most significant inputs

vocab = vect.get_feature_names_out()
input_cols = list(vocab) + weather_cols

best_input_inds = np.argsort(perm_scores)[:100]
best_inputs = [input_cols[idx] for idx in best_input_inds]

print(best_inputs)
['v3', 'v2', 'vehicle', 'involved', 'event', 'harmful', 'stated', 'motor', 'WEATHER8', 'left', 'v1', 'just', 'turn', 'traveling', 'approximately', 'medication', 'hurry', 'encroaching', 'chevrolet', 'parked', 'continued', 'saw', 'road', 'rest', 'distraction', 'ahead', 'wet', 'hit', 'WEATHER5', 'WEATHER6', 'WEATHER4', 'old', 'v4', '48', 'rested', 'direction', 'occurred', 'kph', 'clear', 'right', 'miles', 'uphill', 'WEATHER3', 'denied', '80', 'attempt', 'thinking', 'assumption', 'damage', 'runs', 'time', 'consisted', 'following', 'towed', 'WEATHER1', 'alcohol', 'mph', 'pickup', 'lane', 'conversing', 'make', 'started', 'maneuver', 'stopped', 'store', 'car', 'local', 'dry', 'median', 'south', 'driver', 'higher', 'pre', 'northbound', 'impacting', 'congested', 'health', 'southwest', 'gmc', 'observed', 'parking', 'partially', 'heart', 'shoulders', 'shoulder', 'southeast', 'came', 'heard', 'gap', 'southbound', 'conditions', 'contacted', 'change', 'compact', '2002', 'cell', 'causing', 'oldsmobile', 'half', 'hard']

How about a simple decision tree?

from sklearn import tree

clf = tree.DecisionTreeClassifier(random_state=0, max_leaf_nodes=3)
clf.fit(X_train_bow[:, best_input_inds], y_train);
print(clf.score(X_train_bow[:, best_input_inds], y_train))
print(clf.score(X_val_bow[:, best_input_inds], y_val))
0.9186855360997841
0.9316546762589928

The decision tree ends up giving pretty good results.

Decision tree

tree.plot_tree(clf, feature_names=best_inputs, filled=True);
print(np.where(clf.feature_importances_ > 0)[0])
[best_inputs[ind] for ind in np.where(clf.feature_importances_ > 0)[0]]
[0 1]
['v3', 'v2']

Illustrative Example (Fixed)

Lecture Outline

  • Interpretability

  • Inherent Interpretability

  • Post-hoc Interpretability

  • Illustrative Example

  • Illustrative Example (Fixed)

This is why we replace “v1”, “v2”, “v3”

Code
# Go through every summary and find the words "V1", "V2" and "V3".
# For each summary, replace "V1" with a random number like "V1623", and "V2" with a different random number like "V1234".
rnd.seed(123)

df = df_raw.copy()
for i, summary in enumerate(df["SUMMARY_EN"]):
    word_numbers = ["one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten"]
    num_cars = 10
    new_car_nums = [f"V{rnd.randint(100, 10000)}" for _ in range(num_cars)]
    num_spaces = 4

    for car in range(1, num_cars+1):
        new_num = new_car_nums[car-1]
        summary = summary.replace(f"V-{car}", new_num)
        summary = summary.replace(f"Vehicle {word_numbers[car-1]}", new_num).replace(f"vehicle {word_numbers[car-1]}", new_num)
        summary = summary.replace(f"Vehicle #{word_numbers[car-1]}", new_num).replace(f"vehicle #{word_numbers[car-1]}", new_num)
        summary = summary.replace(f"Vehicle {car}", new_num).replace(f"vehicle {car}", new_num)
        summary = summary.replace(f"Vehicle #{car}", new_num).replace(f"vehicle #{car}", new_num)
        summary = summary.replace(f"Vehicle # {car}", new_num).replace(f"vehicle # {car}", new_num)

        for j in range(num_spaces+1):
            summary = summary.replace(f"V{' '*j}{car}", new_num).replace(f"V{' '*j}#{car}", new_num).replace(f"V{' '*j}# {car}", new_num)
            summary = summary.replace(f"v{' '*j}{car}", new_num).replace(f"v{' '*j}#{car}", new_num).replace(f"v{' '*j}# {car}", new_num)
         
    df.loc[i, "SUMMARY_EN"] = summary

There was a slide in the NLP deck titled “Just ignore this for now…” That was going through each summary and replacing the words “V1”, “V2”, “V3” with random numbers. This was done to see if the model was overfitting to these words.

Code
features = df[["SUMMARY_EN"] + weather_cols]
X_main, X_test, y_main, y_test = train_test_split(features, target, test_size=0.2, random_state=1)
X_train, X_val, y_train, y_val = train_test_split(X_main, y_main, test_size=0.25, random_state=1)

vect = CountVectorizer(max_features=1_000, stop_words="english")
vect.fit(X_train["SUMMARY_EN"])

X_train_bow = vectorise_dataset(X_train, vect)
X_val_bow = vectorise_dataset(X_val, vect)
X_test_bow = vectorise_dataset(X_test, vect)

model = build_model(num_features, num_cats)

es = EarlyStopping(patience=1, restore_best_weights=True,
    monitor="val_accuracy", verbose=2)
model.fit(X_train_bow, y_train, epochs=10,
    callbacks=[es], validation_data=(X_val_bow, y_val), verbose=0);

Retraining on the fixed dataset gives us a more realistic (lower) accuracy.

model.evaluate(X_train_bow, y_train, verbose=0)
[0.07491350173950195, 0.986567497253418, 0.9997601509094238]
model.evaluate(X_val_bow, y_val, verbose=0)
[2.865464925765991, 0.9446043372154236, 0.9956834316253662]

Permutation importance accuracy plot

perm_scores = permutation_test(model, X_val_bow, y_val)[:,1]
plt.plot(perm_scores)
plt.xlabel("Input index"); plt.ylabel("Accuracy when shuffled");

Find the most significant inputs

vocab = vect.get_feature_names_out()
input_cols = list(vocab) + weather_cols

best_input_inds = np.argsort(perm_scores)[:100]
best_inputs = [input_cols[idx] for idx in best_input_inds]

print(best_inputs)
['harmful', 'involved', 'event', 'year', 'struck', 'contacted', 'old', 'impact', 'coded', 'motor', 'rear', 'towed', 'stop', 'driven', 'turning', 'single', 'forward', 'chevrolet', 'lanes', 'crash', 'parked', 'continued', 'WEATHER4', 'WEATHER1', 'travel', 'divided', 'brakes', 'include', 'came', 'stopped', 'final', 'factor', 'clear', '2004', 'speed', '2002', 'reason', 'passing', 'pickup', 'crossing', 'driving', 'ahead', 'did', 'control', '10', 'highway', 'WEATHER5', 'weather', 'traveling', 'surveillance', 'stated', 'spin', 'heart', 'road', 'pole', 'occupants', 'afternoon', 'moderate', 'mirror', 'including', 'pushed', '55mph', 'intersection', 'WEATHER8', '1993', 'cross', 'curve', 'slight', 'dark', 'day', 'sight', 'distance', 'seat', 'saw', 'said', 'drivers', 'earlier', 'early', 'dodge', 'corrected', 'state', 'contributed', '16', 'trying', 'trip', 'buick', 'trailer', 'traffic', 'tractor', 'cherokee', '42', 'taken', '41', 'cloudy', 'collision', 'congested', 'contact', 'eastbound', 'roadways', 'roadway']

How about a simple decision tree?

clf = tree.DecisionTreeClassifier(random_state=0, max_leaf_nodes=3)
clf.fit(X_train_bow[:, best_input_inds], y_train);
print(clf.score(X_train_bow[:, best_input_inds], y_train))
print(clf.score(X_val_bow[:, best_input_inds], y_val))
0.9249220436555529
0.9381294964028777

Decision tree

tree.plot_tree(clf, feature_names=best_inputs, filled=True);
print(np.where(clf.feature_importances_ > 0)[0])
[best_inputs[ind] for ind in np.where(clf.feature_importances_ > 0)[0]]
[ 0 36]
['harmful', 'reason']

Package Versions

from watermark import watermark
print(watermark(python=True, packages="keras,matplotlib,numpy,pandas,seaborn,scipy,torch,tensorflow,tf_keras"))
Python implementation: CPython
Python version       : 3.11.9
IPython version      : 8.24.0

keras     : 3.3.3
matplotlib: 3.9.0
numpy     : 1.26.4
pandas    : 2.2.2
seaborn   : 0.13.2
scipy     : 1.11.0
torch     : 2.3.1
tensorflow: 2.16.1
tf_keras  : 2.16.0

Glossary

  • global interpretability
  • Grad-CAM
  • inherent interpretability
  • LIME
  • local interpretability
  • permutation importance
  • post-hoc interpretability
  • SHAP values