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Interpretability and Trust
Suppose a neural network informs us to increase the premium for

Bob.

Why are we getting such a conclusion from the neural network, and

should we trust it?

How can we explain our pricing scheme to Bob and the regulators?

Should we be concerned with moral hazards, discrimination,

unfairness, and ethical a�airs?

We need to trust the model to employ it! With interpretability, we can

trust it!
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Interpretability
Interpretability De�nition

Interpretability refers to the ease with which one can understand

and comprehend the model’s algorithm and predictions.

Interpretability of black-box models can be crucial to ascertaining

trust.

3 / 18



First Dimension of Interpretability
Inherent Interpretability

�e model is interpretable by design.

Post-hoc Interpretability

�e model is not interpretable by design, but we can use other

methods to explain the model.
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Second Dimension of Interpretability
Global Interpretability:

�e ability to understand how the model works.

Example: how each feature impacts the overall mean prediction.

Local Interpretability:

�e ability to interpret/understand each prediction.

Example: how Bob’s mean prediction has increased the most.
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Rudin (2019), , Nature Machine Intelligence.Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
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https://arxiv.org/pdf/1811.10154.pdf


Trees are interpretable!

Train prices
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Trees are interpretable?

Full train pricing

8 / 18



Linear models

A GLM has the form

where  are the model parameters.

Global & local interpretations are easy to obtain.
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LocalGLMNet

Imagine:

A GLM with local parameters  for each observation

.

The local parameters are the output of a neural network.
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Permutation importance
Inputs: �tted model , tabular dataset .

Compute the reference score  of the model  on data  (for instance the accuracy for a

classi�er or the  for a regressor).

For each feature  (column of ):

For each repetition  in :

Randomly shu�e column  of dataset  to generate a corrupted version of the data

named .

Compute the score  of model  on corrupted data .

Compute importance  for feature  de�ned as:
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Source: scikit-learn documentation, .permutation_importance function
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https://scikit-learn.org/stable/modules/permutation_importance.html


Permutation importance
def permutation_test(model, X, y, num_reps=1, seed=42)�1

"""2
    Run the permutation test for variable importance.3
    Returns matrix of shape (X.shape[1], len(model.evaluate(X, y))).4
    """5
    rnd.seed(seed)6
    scores = []    7

8
for j in range(X.shape[1])�9

        original_column = np.copy(X[�, j])10
        col_scores = []11

12
for r in range(num_reps)�13

            rnd.shuffle(X[�,j])14
            col_scores.append(model.evaluate(X, y, verbose=0))15

16
        scores.append(np.mean(col_scores, axis=0))17
        X[�,j] = original_column18

19
return np.array(scores)20
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LIME

Local Interpretable Model-agnostic Explanations employs an

interpretable surrogate model to explain locally how the black-box

model makes predictions for individual instances.

E.g. a black-box model predicts Bob’s premium as the highest among

all policyholders. LIME uses an interpretable model (a linear

regression) to explain how Bob’s features in�uence the black-box

model’s prediction.

Cf. .“Why Should I Trust You?”: Explaining the Predictions of Any Classi�er
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https://youtu.be/hUnRCxnydCc


Globally vs. Locally Faithful
Globally Faithful

�e interpretable model’s explanations accurately re�ect the

behaviour of the black-box model across the entire input space.

Locally Faithful

�e interpretable model’s explanations accurately re�ect the

behaviour of the black-box model for a speci�c instance.

LIME aims to construct an interpretable model that mimics the

black-box model’s behaviour in a locally faithful manner.
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LIME Algorithm
Suppose we want to explain the instance .

1. Generate perturbed examples of  and use the trained gamma

MDN  to make predictions:

We can then construct a dataset of  perturbed examples:

.

x =Bob (1, 2, 0.5)

x  Bob

f

  

x  Bob
(1)′

x  Bob
(2)′

= (1.1, 1.9, 0.6), f(x  ) = 34000Bob
(1)′

= (0.8, 2.1, 0.4), f(x  ) = 31000Bob
(2)′

⋮ ⋮

N  Examples

D  =LIME ({x  , f(x  )})  Bob
(i)′

Bob
(i)′

i=0
N  Examples
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LIME Algorithm

2. Fit an interpretable model , i.e., a linear regression using 

and the following loss function:

where  represents the distance from the perturbed

example  to the instance to be explained .
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“Explaining” to Bob
The bold red cross is the instance

being explained. LIME samples

instances (grey nodes), gets

predictions using  (gamma MDN) and

weighs them by the proximity to the

instance being explained (represented

here by size). The dashed line  is the

learned local explanation.

f

g
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SHAP Values

The SHapley Additive exPlanations (SHAP) value helps to quantify the

contribution of each feature to the prediction for a speci�c instance.

The SHAP value for the th feature is de�ned as

where  is the number of features. A positive SHAP value indicates

that the variable increases the prediction value.

j
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Reference: Lundberg & Lee (2017), , Advances in Neural Information Processing Systems, 30.A Uni�ed Approach to Interpreting Model Predictions
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https://arxiv.org/pdf/1705.07874.pdf
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Grad-CAM

Original image Grad-CAM

Cf. Chollet (2021), Deep Learning with Python, Section 9.4.3.
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Package Versions
from watermark import watermark1
print(watermark(python=True, packages="keras,matplotlib,numpy,pandas,seaborn,scipy,torch2

Python implementation: CPython
Python version       : 3.11.8
IPython version      : 8.23.0

keras     : 3.2.0
matplotlib: 3.8.4
numpy     : 1.26.4
pandas    : 2.2.1
seaborn   : 0.13.2
scipy     : 1.11.0
torch     : 2.2.2
tensorflow: 2.16.1
tf_keras  : 2.16.0
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